<span class="var-sub_title">Mix-and-Match: A Model-Driven Runtime Optimization Strategy for BFS on GPUs</span> SC18 Proceedings

The International Conference for High Performance Computing, Networking, Storage, and Analysis

IA^3 2018: 8th Workshop on Irregular Applications: Architectures and Algorithms


Mix-and-Match: A Model-Driven Runtime Optimization Strategy for BFS on GPUs

Authors: Merijn Elwin Verstraaten (University of Amsterdam)

Abstract: It is universally accepted that the performance of graph algorithms is heavily dependent on the algorithm, the execution platform, and the structure of the input graph. This variability remains difficult to predict and hinders the choice of the right algorithm for a given problem.

In this work, we focus on a case study: breadth-first search (BFS), a level-based graph traversal algorithm, running on GPUs. We first demonstrate the severity of this variability by presenting 32 variations of 5 implementation strategies for GPU-enabled BFS, and showing how selecting one single algorithm for the entire traversal can significantly limit performance. To alleviate these performance losses, we propose to mix-and-match, at runtime, different algorithms to compose the best performing BFS traversal. Our approach is based on two novel elements: a predictive model, based on a decision tree, which is able to dynamically select the best performing algorithm for each BFS level, and a quick context switch between algorithms, which limits the overhead of the combined BFS.

We demonstrate empirically that our dynamic switching BFS achieves better performance, outperforming our non-switching implementations by 2x and existing state-of-the-art GPU BFS implementations by 3x. We conclude that mix-and-match BFS is a competitive approach for doing fast graph traversal, while being easily extended to include more BFS implementations and easily adaptable to other types of processors or specific types of graphs.


Archive Materials


Back to IA^3 2018: 8th Workshop on Irregular Applications: Architectures and Algorithms Archive Listing

Back to Full Workshop Archive Listing