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Abstract. In recent years, the HPC landscape has shifted away from
traditional multi-core CPU systems to energy-efficient architectures, such
as many-core CPUs and accelerators like GPUs, to achieve high perfor-
mance. The goal of performance portability is to enable developers to
rapidly produce applications which can run efficiently on a variety of
these architectures, with little to no architecture specific code adoptions
required. We implement a key kernel from a material science applica-
tion using OpenMP 3.0, OpenMP 4.5, OpenACC, and CUDA on Intel
architectures, Xeon and Xeon Phi, and NVIDIA GPUs, P100 and V100.
We will compare the performance of the OpenMP 4.5 implementation
with that of the more architecture-specific implementations, examine the
performance of the OpenMP 4.5 implementation on CPUs after back-
porting, and share our experience optimizing large reduction loops, as
well as discuss the latest compiler status for OpenMP 4.5 and OpenACC.

Keywords: OpenMP 3.0 · OpenMP 4.5 · OpenACC · CUDA · Parallel
Programming Models · P100 · V100 · Xeon Phi · Haswell.

1 Introduction

The TOP500 list [1] is dominated by systems that employ accelerators and
energy-efficient architectures in order to reach their quoted performance num-
bers. This trend is expected to continue and intensify on the road to exascale, and
has increased the emphasis on “X” in “MPI + X”, where “X” is an on-node pro-
gramming framework, which allows for code parallelization over threads and/or
vector lanes of a CPU and an accelerator. While “MPI” has established itself
as the preferred choice for distributed programming by many, there is not yet a
consensus choice for the on-node programming model. There are several options
for “X” and they can be loosely categorized into the following.

1. Directive based approaches such as OpenMP, and OpenACC.
2. Architecture specific approaches such as POSIX Threads (pthreads), and

CUDA.
3. Abstraction layers of data/task parallelism such as Intel Thread Building

Blocks (TBB), OpenCL, Kokkos [2], and Raja [3].
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Architecture specific programming models usually require significant code changes
and development efforts. The approach of using an abstraction layer for data/-
task parallelism on the other hand can add an extra dependency to the code.
These models also commonly only support C/C++. In this paper, we focus
on the viability of directive based on-node programming models, OpenMP in
particular, with performance portability in mind.

OpenMP has been a prevailing programming model for years, especially for
first time HPC programmers. Its ease of use and support from major compiler
vendors has aided in its adoption as the first step in the parallelization of a
sequential code. With version 4.0/4.5, the OpenMP standard has been extended
to include support for accelerators. This means that one of the widely used
programming models can now support parallelization over heterogeneous archi-
tectures via a single framework. That said, the implementation of OpenMP 4.5
by compiler vendors is still at an early stage, which we will have a close look at
in this paper.

We investigate porting a relatively simple material science kernel that has
been optimized on CPUs using OpenMP 3.0 [7]. We then implement it us-
ing OpenMP 4.5 [8] on the GPUs. We will compare the performance of the
OpenMP 4.5 implementation with that of its OpenACC [9] counterpart, in terms
of their kernel generation capabilities such as registers used and data moved,
when different grid and thread dimensions are configured. We will discuss the
challenges we faced when implementing the kernel with these frameworks and the
techniques we used to improve the performance of each implementation. After
an examination of our GPU implementations, we will discuss the performance
of the GPU code back on the CPUs and provide an analysis of how portable and
more specifically, performance portable it is.

Overall, this paper is structured around the discussions of

1. The optimization strategies for writing OpenMP 3.0/4.5 codes on CPU

2. Early experiences of OpenMP 4.5 on GPUs compared to other options

3. The portability of OpenMP 4.5 codes back on CPU,

with a goal that is two-fold:

1. To demonstrate that a single code can run across multiple (CPU and GPU)
architectures using OpenMP 4.5, and

2. To demonstrate that such a code can give an acceptable level of performance
compared to the optimized architecture-specific implementations.

The platforms we run on are: the Cori supercomputer [15] at the National
Energy Research Scientific Computing Center (NERSC), Lawrence Berkeley Na-
tional Laboratory (LBNL), for its Intel Haswell and Xeon Phi (Knights Landing
(KNL)) architectures, and the Summit supercomputer [16] and the Summitdev
testbed at the Oak Ridge Leadership Computing Facility (OLCF), Oak Ridge
National Laboratory (ORNL), for their NVIDIA P100 and V100 GPUs, as well
as Power CPUs. At the time of writing, xlc and xlc++ from IBM and gcc are
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the primary compilers which support GPU offloading via OpenMP 4.5 direc-
tives on these systems, and we have experimented with both. For OpenACC,
the compilers we used are from PGI, the pgc and pgc++ compilers.

The rest of the paper is organized as follows, Section 2 presents a basic intro-
duction of the kernel and the application from which the kernel was extracted. In
the same Section, from Subsection 2.2, we present a baseline CPU implementa-
tion of the kernel which we will use as a reference for our GPU implementation.
Section 3 presents our GPU implementations. In this Section, we will present
our experiences with OpenMP4.5 directives and their effective use to optimize
performance on a GPU. We compare our OpenMP implementation for GPUs
with OpenACC and CUDA. In Section 4 we discuss our efforts in porting the
GPU implementations back to the CPU. In Section 6, we talk about our final
conclusions and plans for the future.

2 The GPP kernel and its baseline CPU implementation

In this section, we will introduce the General Plasmon Pole (GPP) kernel [6],
which is a mini-application representing a single MPI rank’s work extracted
from a material science code BerkeleyGW [4] [5]. BerkeleyGW itself can be
used to compute the excited state properties of complex materials and its main
computational bottlenecks are FFTs, dense linear algebra and large reductions,
out of which, large reductions can take up 30% of the whole runtime for certain
common execution paths. GPP represents the node level work of one of these
reductions, and if optimized, can bring significant benefit to the performance of
the whole code.

2.1 GPP kernel

The GPP kernel computes the electron self-energy using the General Plasmon
Pole approximation. Listing 1.1 shows the most basic pseudo code of this kernel
in C++.

Listing 1.1. GPP pseudo code

1 for(X){ // X = 512

2 for(N){ // N = 32768/20

3 for(M){ // M = 32768

4 for(int iw = 0; iw < 3; ++iw){

5 Some computation

6 output[iw] += ...

7 }

8 }

9 }

10 }

The code was originally written in FORTRAN and employs OpenMP for on-
node parallelization. However, in order to apply a large variety of performance
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portable programming approaches, we created a C++ port for the kernel. The
main computational work in the kernel is to perform a series of tensor-contraction-
like operations (involving a non-trivial series of multiply, add and divide in-
structions) for a number of pre-computed complex double-precision arrays, and
eventually reduce them to a small 3x3 matrix. The code uses a double-complex
number as its primary data type. The problem discussed in this paper consists of
512 electrons and 32768 plane wave basis vectors and corresponds to a medium
sized molecule such as Chlorophyll or a small piece of a surface. This choice of
size leads to the following characteristics for the kernel:

1. The overall memory footprint is around 2GB.
2. The first and second loop are closely nested and can be collapsed, with a

resultant trip count of O(800K), which could be a target for thread paral-
lelization on the CPUs or threadblock distribution on the GPUs.

3. The third loop has a fairly large trip count too and can be vectorized on the
CPUs or parallelized with the threads within a threadblock on the GPUs.

4. The innermost loop has a small, fixed trip count and can be unrolled to
facilitate SIMD/SIMT parallelization.

Despite the apparent simplicity, this kernel has a set of very interesting charac-
teristics. For example, the reduction over a series of double-complex arrays that
involves multiply add and divide instructions, which are left out of the paper to
simplify the discussion. Also, the innermost iw loop has significant data-reuse
potential whose dimension is problem size dependent (fixed as 3 for our purposes
in this paper). For typical calculations, this leads to an arithmetic intensity of the
kernel which is between 1-10, which implies that the kernel has to be optimized
for both memory locality as well as thread and vectororization efficiency.

2.2 Baseline CPU implementation

The shared memory parallel programming framework OpenMP [7] is a very
attractive option for incremental parallelization of codes due to its ease of use and
extensive support from compilers. To explicitly address parallelism on hardware
of contemporary CPUs, the least version required is OpenMP 3.0, which supports
common parallelization paradigms such as vectorization and code transformation
features such as loop collapsing, but not the offloading features as in OpenMP
4.x.

Listing 1.2 shows our initial implementation of GPP on CPUs, using OpenMP
3.0, where we spread the “X” loop over threads and “M” loop over SIMD vector
lanes. As written, vectorization is automatic by the Intel compiler, without any
use of a pragma because the compiler chooses to fully unroll the inermost iw

loop. In the general case it is necessary to insert an omp simd pragma outside
the M loop.

To represent a complex number, we built an in-house customized complex
class that mimics the thrust-complex class available in the CUDA [17] frame-
work.
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Complex number reduction is not supported by OpenMP in C/C++ (but it
is in Fortran). To work around this, we divide the output array into two separate
data structures, output re[3] and output im[3], for their respective real and
imaginary components, and apply reduction to these data structures. We could
potentially have utilized a user defined reduction but experienced performance
issues from certain compilers in the past. Similar compiler compatibility issues
apply to array reductions in general. To avoid further problems with compiler
support for array reduction, in this paper we will always split the reductions up
into 6 real-number reductions.

Listing 1.2. GPP + OpenMP 3.0 for CPU

1 #pragma omp parallel for

2 reduction(+:output re[0:3], output im[0:3])

3 for(X){

4 for(N){

5 for(M){

6 for(int iw = 0; iw < 3; ++iw){

7 // Compute and Store in local variables

8 }

9 }

10 for(int iw = 0; iw < 3; ++iw){

11 output_re[iw] += ...

12 output_im[iw] += ...

13 }

14 }

15 }

We execute the code in Listing 1.2 on IBM Power 8 [12], Power 9 [13] and
on Intel Haswell [11] and Xeon Phi [10] architectures. As shown in Figure. 1,
there is a significant performance difference on the Power processors and Intel
architectures. While Power-9 performance is not the focus of this paper, we are
investigating the performance gap with Haswell and will add an explanation to
the camera-ready paper. Our Xeon- Phi timings for GPP is approximately 2.5
seconds and we use this number as a reference benchmark when porting the
application to GPUs.

3 GPU implementations of the GPP kernel

A GPU consists of thousands of cores and they can be abstracted into two
layers of parallelization from a programmer’s point of view, thread blocks and
threads. Thread blocks can form a 1D, 2D or 3D grid, each consisting of the same
number of threads within the block. From a hardware perspective, the threads in
a thread blocks are also grouped into warps of 32 threads, all executing the same
instruction at any time (Volta supports independent thread scheduling). Several
warps constitute a thread block, several thread blocks are assigned to a streaming
multiprocessor (SM), and several tens of SMs make up the whole GPU card.
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Figure 1. Performance of GPP on multicores

Given the massive parallelism available, it is the programmer’s responsibility
to match the appropriate data or task parallelism in the code onto the thread
blocks or threads within a block on the hardware, in order to take full advantage
of the compute power of the card.

We will investigate three programming models on the GPU in this section,
OpenMP 4.5, OpenACC and CUDA, with a focus on OpenMP 4.5. We will lay
out the compilation configurations and implementation details of GPP using
these models, and will also compare them on aspects such as code generation
capability, ease of use, compiler support, and code performance.

3.1 Implementation groundwork

In this subsection we describe the settings and software used for compiling and
running the GPP kernel. On the Summitdev system only gcc and xl compilers
support accelerator offloading via OpenMP 4.5 (recent versions of clang were
not tested), and the compilation flags used for these compilers are shown in
Listing 1.3 and Listing 1.4 respectively.

Listing 1.3. Compile flags for gcc for OpenMP offloading

1 CXXFLAGS = -g -O3 -std=c++11 -fopenmp

2 CXXFLAGS += -foffload=nvptx -none

3 LINKFLAGS = -fopenmp -foffload=nvptx -none
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Listing 1.4. Compile flags for xlc for OpenMP offloading

1 CXXFLAGS=-O3 -std=gnu ++11 -g -qsmp=noauto:omp

2 CXXFLAGS+=-qoffload #offload target regions to a GPU

3 CXXFLAGS+=-Xptxas -v #generate report , a CUDA flag

4 LINKFLAGS +=-qsmp=noauto #disable auto parallelization

5 LINKFLAGS +=-qsmp=omp -qoffload

In our experiments, we observed that the performance of kernels generated
by gcc compiler was considerably worse than that of the xl compilers. Therefore,
if not otherwise stated, we will use xl/20180223-beta and xl/20180502 on
Summitdev and Summit respectively for all OpenMP 4.5 enabled GPU offloading
experiments in this paper. For OpenACC offloading, we employed version 18.4
of the pgi compiler available on Cori, SummitDev and Summit machines. pgi
compile flags for Summitdev and Summit are shown in Listing 1.5.

Listing 1.5. Compile flags for pgi for OpenACC offloading

1 CXXFLAGS = -fast -std=c++11 --gnu_extensions -Munroll

2 CXXFLAGS += -acc -ta=tesla:cc70 #CUDA kernels for V100

3 #CXXFLAGS += -acc -ta=tesla:cc60 #CUDA kernels for P100

4 CXXFLAGS += -Minfo=accel #generate report

5 LINKFLAGS = -acc -ta=tesla:cc70

6 #LINKFLAGS = -acc -ta=tesla:cc60

3.2 OpenMP 4.5

In order to map the GPP kernel efficiently to the GPU, we need to exploit the
different levels of hardware parallelism described above. More precisely, we want
to distribute the X, N and M loops across threadblocks and threads within a block
in a way that it takes the maximum advantage of the available GPU resources.

In our initial experiments, as a naive CPU parallel programmer, we followed
the idea of distributing X loop of Listing 1.1 across threadblocks and the N, M
loops across threads within a threadblock. This is shown in Listing 1.6.

Listing 1.6. GPP with OpenMP 4.5 directives

1 #pragma omp target teams distribute

2 map(to:..) map(from:output re[0:3],output im[0:3])

3 for(X){

4 #pragma omp parallel for

5 for(N){

6 #pragma omp simd

7 for(M){

8 for(int iw = 0; iw < 3; ++iw){

9 // Store in local variables

10 }

11 }

12 for(int iw = 0; iw < 3; ++iw){



8 Rahulkumar Gayatri, Charlene Yang, Thorsten Kurth, and Jack Deslippe

13 #pragma omp atomic

14 output_re[iw] += ...

15 #pragma omp atomic

16 output_im[iw] += ...

17 }

18 }

19 }

The target directive on line 1 offloads the code block that follows the di-
rective onto the accelerator. The teams distribute directives divide the loop
iterations into teams and distribute them among the threadblocks. The parallel
for on line 4 will distribute the loop iterations among the warps of a thread-
block and simd directive on line 6 will divide the loop that follows it among the
threads in a warp. We inline all function calls from inside the kernel region to
avoid additional overhead caused by kernel calls from the device. Array reduc-
tions are not supported inside target regions by the xl compilers and therefore
we resorted to our atomic update approach. We furthermore need to manage
the data accessed inside the target region. This information is passed to the
framework via the map clauses and their use is shown in Listing 1.6:

– map(to:input[0:N]) - copy the values in the data structure to the device
at the start of the target region.

– map(tofrom:input-output[0:N]) - copy the values in the data structure
to-and-from the device

– map(from:output[0:N]) - copy the values in the data structure from the
device at the end of the target region

– map(alloc:input[0:N]) - A corresponding storage space for input is cre-
ated on the device

– map(delete:input[0:N]) - Delete the allocated data on the device

Our initial implementation shown in listing 1.6 did not make the optimal use of
available resources. It generated a kernel with 1280 threadblocks and 354 threads
per block. Even though the X loop has only 512 iteration space, xl implemen-
tation of OpenMP 4.5 directives generated approximately twice the necessary
threadblocks. The xl compilers distributed the N loop following the parallel

for directive among the threads of a threadblock. Based on the iteration space
and assuming all iterations take similar runtime, every thread would execute 4
iterations of the N loop and in every iteration the M loop is executed sequentially.
This implies that the 3rd loop which has an iteration space of O(33K) are not
parallelized. After experimentation with different combinations of work distri-
bution Listing 1.7 shows our best implementation (without replacing atomic) of
GPP.

Listing 1.7. Optimized GPP with OpenMP 4.5 with atomic

1 #pragma omp target enter data map(alloc:input[0:X]))

2 #pragma omp target teams distribute parallel for collapse(2)

3 map(tofrom:output re[0:3], output im[0:3])
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4 for(X){

5 for(N){

6 for(M){

7 for(int iw = 0; iw < 3; ++iw){

8 // Store in local variables

9 }

10 }

11 #pragma omp atomic

12 output_re* += ...

13 #pragma omp atomic

14 output_im* += ...

15 }

16 #pragma omp target exit data map(delete:input[0:X]))

17 }

OpenMP provides clauses( alloc) to allocate data on the device. As mentioned
in Section 2, the memory usage of GPP is approximately 2GB and hence we can
allocate all the necessary data on the device. The use of this clause improved the
performance of the kernel by 10%, however, the total runtime of the application
remained constant. This implies that prior to the usage of alloc clause, the
kernel time evaluated also included the time taken for data transfers.

In Listing 1.7, we collapse the outer two loops and distribute the resulting
iterations among threadblocks and threads within a block. This generates 6552
threadblocks and 128 threads per block. Even in this case all the iterations
in the M loop are run sequentially by each thread. Distributing them among
threads for parallelization increases the number of atomic updates relative to
the loop iteration space i.e., O(33K). The benefits of parallelizing the M loop
are overshadowed by the overhead incurred due to atomic updates which are
necessary to maintain correctness.

To avoid the use of atomic and take advantage of parallelizing the M loop, we
assign scalar variables to each of the three real and three imaginary components
of output and pass them into the reduction clause. This optimization gave us
a performance boost of 3×. output re* and output im* in Listing 1.8 represent
these variables.

Listing 1.8. GPP + OpenMP 4.5 with reduction for GPU

1 #pragma omp target enter data map(alloc:input[0:X])

2 #pragma omp target teams distribute parallel for collapse(2)

3 reduction(+:output re*, output im*)

4 for(X){

5 for(N){

6 #pragma omp parallel for

7 reduction(+:output re*, output im*)

8 for(M){

9 for(int iw = 0; iw < 3; ++iw){

10 // Store in local variables
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11 }

12

13 output_re* += ...

14 output_im* += ...

15 }

16

17 }

18 #pragma omp target exit data map(delete:input[0:X])

19 }

Listing 1.8 shows the pseudo code for our most optimized implementation of
GPP via OpenMP 4.5 directives. In this code we collapse the outer two loops, i.e.,
X and N and distribute them over threadblocks while the M loop is parallelized
over the threads in a thread block. Since the values are updated inside the M

loop we have a reduction clause with the teams distribute and parallel

for directives. Unlike Listing 1.6 where output re and output im are passed to
the map(from:...) clause, variables passed into the reduction clause need not
be passed in any other clauses. Listing 1.8 generates 1280 threadblocks and 512
threads per block.

OpenMP 4.5 also provides clauses to control the grid and thread dimension
generated by the framework. A programmer can use num teams and thread limit

clauses to inform the framework about the number of threadblocks and threads
per block with which the CUDA kernel should be launched. In our case we re-
alized that the default kernel dimensions chosen by the compiler were optimal.
Figure 2 shows the performance comparison between atomic and reduction

on P100 and V100. Both the implementations use different parallelization tech-
niques as shown in Listing 1.7 and 1.8 respectively. This implies that the use of
atomic or reduction with xl compilers to maintain correctness might lead to
different optimal parallelization strategies on a GPU.

xl vs gcc implementation of OpenMP 4.5 Although, in the disucssion above
and for the rest of the paper, we focus on xl implementation of OpenMP 4.5,
we were also successful in porting GPP with gcc compiler using the accelerator
directives. In this section we present three major differences between the compiler
implementations of OpenMP 4.5 directives that complicated the use of OpenMP
4.5 when targetting a code that is intended to support multiple compilers.

1. simd in the case of xl compilers is optional but mandatory for gcc to make
use of all the threads in a warp.

2. The use of map clauses is mandatory for xl compilers. Every memory location
accessed inside target region has to pass through one of the directionality
clauses. In case of gcc, this condition is not enforced.

3. In practice it has been our observation that dynamic allocation of data struc-
tures inside the target directives fail with the xl compilers. This constraint
is not applicable to gcc compilers.
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Figure 2. atomic vs. reduction clauses for OpenMP 4.5 directives on P100 GPU.

3.3 OpenACC

Similar to OpenMP 4.5, OpenACC has its own directives to distribute loops
across the threads of a GPU. OpenACC directives for work distribution across
GPU threadblock and threads are gang and vector respectively.

The experiences gained in OpenMP offloading experiments helped us in tun-
ing the OpenACC implementations. The best performance of GPP with Ope-
nACC directives was achieved with the reduction implementation of OpenACC,
similar to OpenMP 4.5 as shown in Listing 1.9.

Listing 1.9. GPP + OpenACC for GPU

1 #pragma enter data create(input[0:X]))

2 #pragma acc parallel loop gang collapse(2)

3 present(input[0:X]))

4 reduction(+:output re*, output im*)

5 for(X){

6 for(N){

7 #pragma acc loop vector\

8 #reduction (+: output_re*, output_im *)

9 for(M){

10 for(int iw = 0; iw < 3; ++iw){

11 // Store in local variables
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12 }

13 }

14 output_re* += ...

15 output_im* += ...

16 }

17 #pragma exit data delete(input[0:X])

18 }

In Listing 1.9, the directives in line 2 collapse the X and N loop and distribute
them among the threadblocks, while the directives in line 7 distribute the M loop
among the threads in a threadblock.

The reduction versions of OpenACC and OpenMP 4.5 give equivalent per-
formance. However the pgi compiler generates 65535 threadblocks and 128 threads
per block for this parallelization which is significantly different than the 1280
threadblocks and 512 threads per block generated by the xl compiler in response
to the OpenMP offload directives. Section 3.5 discusses the reasons for similar
performance with different kernel configuration in greater detail.

The optimal atomic version with OpenACC occurs when we distribute the
X loop among the threadblocks and N loop among the threads per block. For
this version the compiler generated a kernel with 512 threadblocks and 128
threads per block and its performance is 2× faster than the atomic version of
OpenMP 4.5. However, when we back-ported these changes to the xl implemen-
tations of OpenMP 4.5, we were unable to replicate the performance.

Line 1 and line 15 of Listing 1.9. are the data allocation directives of Ope-
nACC. The present directive in line 3 informs the compiler that the data passed
to this clause is available on the device. Otherwise copyin and copyout clauses
are necessary to map the necessary data on-to the device. During our OpenACC
implementation, we learned that the pgi compiler does not copy the data on to
the device when encountered with the data create directives. The actual copy
occurs when the corresponding data is encountered inside the kernel. In order
to overcome this issue, we initialized the data on the device to guarantee its
availability during kernel launch. This optimization was performed in order to
avoid the inclusion of memory transfer time in kernel computation timing.

Figure 3 shows the comparison of atomic versus reduction versions of GPP
on both the GPU architectures. The atomic version in the case of OpenACC is
only 5 % slower than the reduction version which is significantly lower than the
difference between similar implementations of OpenMP 4.5.

3.4 CUDA

CUDA [17] is an extension of the C and C++ programming language, developed
by NVIDIA to offload parallel kernels onto a GPU. In version 1, we implement a
single dimension grid with the X loop being distributed across the threadblocks
and N loop between the threads of a threadblock. In version 2 we generate a
two dimensional grid. The 1st dimension is the outermost X loop and 2nd dimen-
sion is the N loop. The innermost M loop is distributed among the threads of a
threadblock. Both the kernel launch parameters are shown in Listing 1.10.
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Figure 3. atomic versus reduction in OpenACC on P100 and V100

Listing 1.10. Kernel parameters for CUDA version 1 and version 2

1 dim3 numBlocks(X,1,1);

2 dim3 numThreadsPerBlock (64,1,1);

3

4 // Version 2

5 dim3 numBlocks(X,N,1);

6 dim3 numThreadsPerBlock (32,1,1);

7

8 // Kernel Launch

9 gpp_Kernel <<<numBlocks , numThreadsPerBlock >>> (...);

We launch the kernels with 64 and 32 threads per threadblock for version 1 and
version 2 respectively. In our experiments these proved to be the ideal kernel
launch parameters for the respective versions. We use the atomcAdd routine in
CUDA to maintain correctness of our updates.

While version 1 gave similar performance as the corresponding OpenACC
atomic implementation, version 2 was approximately 2× faster compared to
version 1. But as shown in Figure 3, the difference between the atomic and
reduction implementations of OpenACC was only 5%. This shows that the
benefits of CUDA version 2 implementation were unavailable in the correspond-
ing OpenACC or the OpenMP 4.5 versions which give similar performance.
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3.5 Performance comparison among GPU implementations

In this section we perform a detailed comparison among the available GPU
implementations. We specifically focus on the differences between OpenMP 4.5
and OpenACC implementations of GPP.

OpenMP 4.5 vs OpenACC The optimized reduction version of OpenMP
and OpenACC collapses the X and N loops and distributes them across thread-
blocks whereas the M loop is parallelized over the threads. Table 1 presents a
comparison of the kernels generated by both these versions.

V100 runtime grid-dim thread-dim registers

OpenACC(pgi/18.4) 1.24 (65535,1,1) (128,1,1) 136

OpenMP(xlc/20180502) 1.25 (1280,1,1) (512,1,1) 114

Table 1. OpenACC vs OpenMP 4.5 kernel configuration on V100 reduction
version

Collapsing of X and N loops generates O(800K) iterations that can be dis-
tributed across the available threadblocks. From the details presented in Table 1,
we observe that even though OpenACC generates 50× more threadblocks (and
4x fewer threads per block) than OpenMP, both the frameworks give us ap-
proximately the same runtime. A summary of the hardware metrics and their
comparison is shown in Table 2. While dram-utilization and warp-efficiency in
both the implementations are similar, OpenMP has a 30% higher global-hit-rate,
i.e., hit rate for global load and store in L1 cache and a somewhat higher oc-
cupancy, i.e., the ratio of active warps to the maximum number of warps per
cycle. We expect on OpenACC the latency of the misses is effectively hidden by
the additional overall threads available and there is a high enough arithmetic
intensity to avoid saturating memory bandwidth.

V100 dram-utilization global-hit-rate Warp-efficiency occupancy

OpenACC(pgi/18.4) 8 (high) 54.05% 99.92% 0.19

OpenMP(xlc/20180502) 7 (high) 84.6 99.86% 0.27

Table 2. OpenACC vs OpenMP 4.5 kernel configuration on V100 reduction
version

GPP performance on contemporary GPUs In this section we perform a
general comparison among all the available GPU implementations of the kernel.
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The horizontal dash line in Figure 4 represents the performance of GPP on
Xeon Phi against which we compare our GPU implementations. As observed the
Figure 4, apart from the OpenMP 4.5 version on P100, all other implementations
perform better than OpenMP 3.0 implementation on Xeon Phi. OpenMP 4.5 in
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Figure 4. Performance on P100 and V100

particular, shows a drastic improvement in its performance relative to other
implementations on Volta compared to Pascal. The main reason for this is the
use of new compiler on the Summit machine, which is unavailable on Summitdev.
This shows the importance of compiler maturity in generating optimal CUDA
kernels via the offload directives.

As mentioned in Section 3.4, our CUDA version 2 implementation of GPP is
similar to the reduction version of OpenMP and OpenACC, however its runtime
is approximately 2× faster. CUDA version 2 generates a grid of (512,1638,1)

with 32 threads per threadblock, i.e., 50× more than OpenACC. Additionally its
dram-utilization relative to peak utilization is 9, which is higher than OpenMP
and OpenACC implementations, 7 and 8 respectively. Back-porting the kernel
configuration onto OpenACC and OpenMP implementations using the clauses
provided did not result in the same performance benefits. Additionally the GPU
occupancy in case of CUDA version 2 is approximately 0.5 which is higher com-
pared to 0.27 and 0.19 for OpenMP and OpenACC respectively.
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Another important observation in Figure 4 is the approximately 2× difference
between P100 and V100 performance. We also want to assert that the code
implementations were consistent for every framework on both the GPUs. Further
investigation is required (to be resolved before camera-ready date), but we are
initially attributing the faster performance on Volta GPU to the following: 1)
Compared to Pascal, Volta has a bigger and faster L1 cache; 2) global atomic is
2× faster, which may be important for reductions in GPP; 3) lower instruction
latency.

4 Porting GPU implementations back to CPU

As mentioned in Introduction of this paper, our aim is to evaluate the status of
the current programming frameworks and their ability to create a single code
implementation that can be executed across architectures. In this section we
discuss the performance of OpenMP and OpenACC GPU implementations on
CPUs, especially Intel’s Haswell and Xeon Phi.

4.1 OpenACC

Initially, pgi compilers were unable to parallelize GPP loops annotated with
OpenACC directives on CPUs. The compiler appeared to assume dependencies
between variables declared inside the loops which should technically be consid-
ered thread-private. The pgi compiler as a part of its aggressive optimization
hoists variables declared inside the loop. This implies that the OpenACC direc-
tives would annotate these variables as shared, if stated otherwise, and prevent
the parallelization of these loops. To avoid these problems, we declared the said
variables outside the loops and marked them private to avoid dependency as-
sumptions by the compiler.

Even after the said changes, pgi compiler was unable to vectorize the code
for CPUs. Hence OpenACC implementation on CPUs for GPP is 4× slower than
the OpenMP implementation.

4.2 OpenMP 4.5

For the compilation of OpenMP 4.5 on Haswell and Xeon Phi, we used the
intel/18.0.1.163 compiler on the Cori machine. Listing 1.11, shows the flags
used in order to compile the code on CPUs.

Listing 1.11. Intel flags for OpenMP 4.5

1 CXXFLAGS=-O3 -std=c++11 -qopenmp -qopt -report =5

2 CXXFLAGS+=-qopenmp -offload=host #For offloading

3 #CXXFLAGS+=-xCORE -AVX2 #For Haswell

4 CXXFLAGS+=-xMIC -AVX512 #For Xeon Phi

5 LINKFLAGS=-qopenmp

6 LINKFLAGS +=-qopenmp -offload=mic #For Xeon Phi
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Intel compiler, when encountered the with the target teams directive of OpenMP 4.5
on a CPU, generates a single team and assigns all the threads available to the
team. Hence when the corresponding parallel for is encountered, the loop
following the directive is parallelized among the available threads. In case of
our best OpenMP 4.5 reduction implementation, this translates to the outer-
most X and N loop running sequentially, but the innermost M loop is distributed
among the threads. In the case of GPP, this interpretation of OpenMP offload
directives lead to a “portable” but not “performance portable” code since such
a parallelization increases the GPP runtime by 25× compared to the optimized
OpenMP 3.0 implementation. In order to optimize GPP with OpenMP 4.5 on
CPUs, we modified the implementation by moving the parallel for directives
on X loop as shown in Listing 1.12.

Listing 1.12. GPP + OpenMP 4.5 on CPU

1 #pragma omp target teams distribute parallel for

2 reduction(+:output re*, output im*)

3 for(X){

4 for(N){

5 for(M){

6 for(iw = 0; iw < 3; ++iw)

7 {// Store in local variables}

8 }

9 output_re* += ...

10 output_im* += ...

11 }

12 }

This creates a team of 272 or 64 threads for Xeon Phi or Haswell and distributes
the X loop across the available threads. This is similar to the OpenMP 3.0 im-
plementation of GPP.

Figure 5 shows a comparison of executing optimal GPU and CPU implemen-
tations with OpenMP 4.5 directives on Xeon Phi and Volta. As can be observed
the performance of CPU optimized OpenMP 4.5 implementation is similar to the
optimized OpenMP 3.0 runtime. However, on GPU the implementation is 5×
slower than the optimized OpenMP 4.5 implementation for GPUs. Conversely,
the optimized GPU implementation with OpenMP 4.5 is 25× slower than the
optimized implementation on Xeon Phi. This experiment shows that the as-
sumption by the intel compilers where they equate the threads on a CPU and
threads in a GPU’s threadblock did not result in a “performance portable” code
in the case of GPP .

5 Related Work

Since OpenMP 4.5 began gaining traction with compilers, there have been a
number studies performed in the community (we discuss a number below) to
compare its performance and cost of implementation to other GPU programming
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Figure 5. OpenMP 4.5 on CPU

models. Our effort is intended to be complimentary to these published works,
represent a specific case-study of importance to the Material Science community
and document a snapshot of the current state of support under rapid OpenMP
4.5 development and optimization over the past few years.

One of the early works to evaluate OpenMP 4.0 on Xeon Phi and GPUs is
published in [20]. In this they chose a kernel representative of regular workloads
on Titan and attempt to port it across widely used HPC architectures such
as CPU, CPU+accelerator and self hosted coprocessor using OpenMP 4.0. In
[19], the authors evaluate and analyze OpenMP 4.X benchmarks on Power8
and NVIDIA Tesla K80 platform. They perform an analysis of hand written
CUDA code and the automatic GPU code generated using IBM xl compilers
and clang/LLVM compilers from high level OpenMP 4.x programs. Our work
differs from the paper in two major areas: 1) The kernel we ported is more
complicated and uses a template class to represent a complex number, and; 2)
We back-port the GPU implementations of OpenMP 4.5 onto CPUs.

In [18], the authors evaluate the “state of the art” for achieving performance
portability using compiler directives. The paper performs an in-depth analysis
of the how OpenMP 4.0 model performs on K20X GPU and in Xeon Phi ar-
chitectures for commonly used kernel such as “daxpy” and “dgemm”. However
unlike this paper, they do not discuss the kernel configurations generated by the
frameworks and their impact on the various parallel-loops inside the kernel.
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6 Summary and future work

In this paper, we presented an analysis on the effort needed to port a kernel onto
CPUs and GPUs using OpenMP in comparison to other approaches with focus
on OpenACC. We discussed the configurations of the kernels generated and
the methods to tune them in order to optimize the use of available hardware
resources.

We were successful in porting our best implementation of OpenMP 4.5 onto
CPUs with some important changes to the implementation. The performance
of this version is equivalent to our best OpenMP 3.0 version. But, an exactly
unchanged OpenMP 4.5 version optimized for GPUs is ill-suited for CPU exe-
cution.

OpenACC and OpenMP, both lack the ability to fully generate a customized
multidimensional grid and threads for GPUs. While this drawback can be over-
come by flattening the loop via the collapse clause, our experiments have shown
that the performance of such an optimization might still be slower than the
CUDA 2-dimensional grid, where we achieved our best performance result.

6.1 Future work

The memory footprint of this kernel is approximately 2GB and hence can be
completely allocated in the HBM of P100 and V100. In the future we want to
evaluate the practical amount of work required to port kernels which exceed the
memory space that can be allocated on the device. Although there are plans to
include UVM support from OpenMP 5 version, the xlc compilers allow passing of
device pointers to the framework. The memory on the device could be allocated
via cudaManagedMalloc and the corresponding pointer would be passed to the
OpenMP 4.5 via is device ptr clause - allowing such studies to be done today.
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