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Abstract—When acquiring a supercomputer it is desirable
to specify its performance using a single number. For many
procurements, this is usually stated as a performance increase
over a current generation platform, for example machine A
provides 10 times greater performance than machine B. The
determination of such a single number is not necessarily a simple
process; there is no universal agreement on how this calculation
is performed and each facility usually uses their own method.
In the future, the landscape will be further complicated because
systems will contain a heterogeneous mix of node types, and, by
design, every application will not run on every node type. For
example, at the National Energy Research Scientific Computing
Center (NERSC) the Cori supercomputer contains two node
types, nodes based on dual-socket Intel Xeon (Haswell) processors
and nodes based on Intel Xeon Phi (Knights Landing) processors.
However, NERSC evaluated these two partitions separately,
without utilizing a single, combined performance metric. NERSC
will be deploying its next-generation machine, NERSC-9, in the
year 2020 and anticipates that it too will be a heterogeneous mix
of node types. The purpose of this paper is to describe a single
performance metric for a heterogeneous system.

I. INTRODUCTION

Performance metrics have great value for evaluating and
comparing supercomputers. Such measurements are important
for a number of reasons: measuring delivered performance
against requirements collected from the scientific user com-
munity, satisfying stakeholder concerns on the appropriateness
of a proposed or delivered system, setting relative job charge
factors between systems at the center, etc. With the acquisition
of each new system, the increase in capability delivered by
the system must be quantified, and in the context of high
performance computing (HPC) procurements, one might say
that “you get what you measure” is as true as the adage “you
get what you pay for.”

While metrics that capture peak-performance in near ideal
conditions, such as those obtained by the TOP500 list [1],
provide a description of the capability of an HPC system,
it is often hard to translate differences in measured LIN-
PACK FLOPs between systems to performance differences
in complex scientific simulation or data-analysis codes that
may depend on a wide array of system features (e.g. cache
and memory capacities, bandwidths and latencies, high speed
network characteristics and I/O speeds and feeds). For this
reason, it has become common to use an approach based on
workload representative benchmark applications. The National

Energy Research Scientific Computing center (NERSC) has
historically used the Sustained System Performance (SSP)
metric [2], which later evolved into the Sustained System
Improvement (SSI) metric introduced in Section III. Both
of these metrics characterize a system based on the average
performance of a suite of representative benchmarks and
implicitly assume a homogeneous compute architecture.

The slowing of Moore’s Law has prompted many technol-
ogists to suggest that the largest gains in performance and
efficiency are likely to be achieved by tuning processors for
specific tasks rather than relying on incremental improvements
to high-performance general purpose processors. In this vision
of “extreme-heterogeneity”, HPC platforms are comprised of
integrated collections of diverse processing elements, each de-
signed to accelerate different components of the workload [3].
To enable comparisons of heterogeneous (or homogeneous)
architectures with a consistent value metric, and to quantify
the value of hardware specialization, this paper introduces
heterogeneous extensions to SSP and SSI.

Many HPC centers have already found utility in deploy-
ing platforms with heterogeneous node-types. For example,
NERSC'’s current Cori system contains a mixture of node
types, with either Intel Haswell or Intel Knights Landing
processors, and the Blue Waters system at NCSA includes
Cray XC-6 with AMD CPUs and XK-7 nodes accelerated
with NVIDIA Kepler GPUs. The predominant accelerators
used in HPC today (as exemplified by the Summit system
at Oak Ridge Leadership Computing Facility) are graphics
processing units (GPUs). Section V illustrates the use of SSI
to determine the optimal fraction of nodes with and without
GPUs, subject to total budget constraints. In this scenario,
it becomes important to balance the performance benefits
of each accelerator against its cost. Although this example
considers only two node types, hetero-SSI can be applied,
without modification, to arbitrarily many accelerators.

II. SCALABLE SYSTEM IMPROVEMENT (SSI) METRIC
A. Related work and historical background

The SSI metric was developed to evaluate supercomputer
performance and influence architectural direction. It combines
aspects of the Sustained System Performance (SSP) and Ca-
pability Improvement (CI) metrics used in previous NERSC
procurements.



SSP: The SSP metric provides a measure of the sustained
floating point performance of a suite of applications [2].
It is defined as the geometric mean of the performance in
FLOP/s/node of each application in the suite multiplied by
the total number of nodes in the system:

SSP:N<M> (1)

n;

where the angle brackets denote a mean operation over all
applications, i, N is the total number of compute nodes in
the platform, and Fj, ¢; and n; are the total number of
FLOPs, runtime, and nodes used to run benchmark ¢. The
final metric has units of FLOP/s and represents the average
rate of computational work on a supercomputer running the
computing center workload.

CI: The CI metric provides a measure of the capability
improvement over a reference system. It is motivated by the
desire to execute larger problems more efficiently on a new su-
percomputing platform. The CI of each application benchmark
is defined as the increase in problem size multiplied by the run
time performance speedup relative to a reference platform [4].
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Historically, the CI was calculated using the arithmetic mean
of the application benchmarks CIs. The similarity on the
RHS of Equation 2 emphasizes that ¢; and #*! correspond
to different, weak-scaled inputs to the same application; the
problem size factor, ¢;, is analogous to F;/ Fl-mf, though there
may not be an exact equivalence. The c; factor enabled the
inclusion of capability-scale benchmarks that could not be
performed on the reference platform.

The choice of metric is important because it has an effect
on the proposed architecture. Vendors will be influenced by
optimizing the metric and may propose an architecture that
is mismatched to the current needs or strategic direction of
the computing center. For example, the SSP score is often
improved by running application benchmarks on the fewest
possible compute nodes to minimize scaling costs. However,
this is unrealistic since a user has an expected turnaround
time to complete the stages of their scientific workflow. It
is also potentially harmful because it can lead to undesirable
architectural trade-offs, e.g increasing memory capacity per
node by sacrificing network performance. To address these
issues, the SSI metric combines the most useful features of
SSP and CI into a compact and consistent form.

SSI: SSI relates the average application throughput of one
platform to that of a reference system.

)t ref
SSI = <N Cl/tl> / <Nref l/f;f > (3)
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Along with the SSI definition, we propose two optional
“knobs” that may influence the evaluation of an architecture.
First, the use of a weighted mean allows the designer of the
benchmark suite to prioritize applications according to their
importance to the workload. Because different applications are

likely to emphasize different aspects of the platform, weights
have a direct impact on the optimal system balance.

The second knob is a requirement that ¢; < t§6f, which en-
forces users’ natural expectations that each platform generation
will improve the time-to-solution. This constraint is necessary
because, for example, the unconstrained SSI score is often
improved by running the benchmarks on the fewest number
of nodes to avoid scaling inefficiencies. This case could lead
to an undesirable architectural trade-off; sacrificing network
performance for increased memory per node.

SSI provides multiple mechanisms to influence the proposed
architecture and attach value to architectural features that are
expected to benefit a workload in the coming years. The
benchmark team specifies the weight of each application in the
average, the capability scaling factor (c;), and the node count
(n?f) used to obtain the reference figure of merit (FOM) such
as t°f. For example, the NERSC-9 benchmark team collected
reference times at node counts when strong-scaling overheads
are relatively high. The intended effect of selecting aggressive
t'*f was to emphasize the need for network performance in
order to obtain significant gains over the threshold speedup
of 1.0.

In limiting cases, SSI simplifies to either of its SSP or CI
predecessors. If the geometric mean is used, along with uni-
form weights, ¢; = 1, and ¢; is unconstrained, then Equation 3
can be rearranged easily to show that SSI = SSP / SSP™f,

The connection to CI can be seen by interpreting SSI as
an average of application CIs, each multiplied by a utilization
factor, U; = (N/n;)/(N*® /nt°!). The machine utilization is
introduced to reward application throughput and machine size
relative to a reference machine. (Utilization is accounted for
in the SSP metric.) For example, if an application benchmark
is run on 200 nodes of a proposed 1000 node machine and
the reference run was performed on 160 nodes of a 500 node
machine then the utilization term would be % % = 1.6.
Defining a speedup factor, S; = #°//¢; that compares the
runtime (or other application-specific figure-of-merit such as
time-per-iteration), leads to a particularly compact expression
based on this interpretation:

SSI* = <Ci Uz Sl> (4)
B. Which mean to use

For SSI, NERSC uses the geometric mean. However, one
could also use the arithmetic or the harmonic mean in the
calculation. The choice of which mean to use depends on the
use case. The use of the Pythagorean means in benchmarking
has been extensively analyzed in [S] and [6]. Although there
are some contradictions in their conclusions, a reasonable
summary is: 1) the arithmetic mean should only be used when
performance metrics are stated in time, 2) the harmonic mean
should be used when performance is expressed as a rate, such
as operations/second, and 3) if performance is normalized
to a specific baseline, such as SSI does using speedup, the
geometric mean is appropriate but the aggregate performance
measure such as total time should be used before normal-
ization. However, for SSI we do normalize each individual



result and then calculate the mean. The reason for this is
each benchmark application’s FOM is independent and the
FOM varies due to what the benchmark author is trying to
measure and can be total time, grind time, operations/second,
updates/second, etc. Hence we cannot add results together
to calculate total time, nor total work, nor total rate as is
recommended for correctness when using the arithmetic and
harmonic means.

For NERSC, another reason for using geometric mean is
practicality. Historically we have used the geometric mean
in the calculation of SSP and have compared performance
improvement from one machine to the next by taking the ratios
of respective machine SSPs. SSI is exactly this only more
explicit and hence it maintains consistency and allows us to
better understand improvements through machine generations.

III. HETEROGENEOUS SSI FORMULATION

In order to compare platforms consisting of architecturally
distinct partitions with different performance properties, it
is useful to generalize the preceding performance metrics
to quantify the combined performance of the heterogeneous
system. The most straightforward modification is to sum the
contributions of each partition to the total throughput of each
application, then compute their mean. This is analogous to a
heterogeneous SSP in which subscript p has been added to
the quantities in Equation 1 to indicate that they are measured
independently for each partition:

hetero-SSP = <Z Np%> )
»

Ni,p

However, this simple approach of hetero-SSP does not account
for the potential benefits of specialization. For example, if
applications A and B can run on partitions P and Q, but
only application B gets accelerated on Q, then the combined
throughput can be increased if A cedes its Q-allocation to
B and vice versa. The benefit of this trade-off is particularly
dramatic when A has not been ported to Q.

The heterogeneous SSI metric resembles a ratio of hetero-
SSPs, but allows specialization by introducing f; ,, which
denotes the fraction of partition p devoted to benchmark i:

ci/tq, ci/tip
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The f;, variables can be optimized to increase SSI subject to
the constraints ). f; , < 1Vp, which prevents oversubscrip-
tion of any partition. For applications that cannot run on a
given partition, the optimal value of f; , is zero.

Hetero-SSI can be rewritten particularly compactly when
the reference platform consists of only one partition, shared
equally among benchmarks:

X <Z finciUip Si,p> (7
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hetero-SSI =

(6)

hetero-SSI* =

TABLE I
GPU READINESS CATEGORIZATION
GPU Status | Description | Fraction
B Enabled Most features are ported with good performance. 46%
Proxy Kernels in related codes have been ported. 19%
B Unlikely A GPU port would require major effort. 11%
Unknown | GPU readiness cannot be assessed at this time. 24%
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Fig. 1. NERSC workload by core hours used, July 2017 - August 2018.
Colors correspond to the GPU readiness levels in Table I

The additional factor of B is equal to the number of bench-
marks and is needed to normalize hetero-SSI with its non-
heterogeneous form. In the following sections, we use the
simplified form shown in Equation 7 to compute SSI.

IV. BENCHMARKING KEY NERSC APPLICATIONS ON GPU
BASED SUPERCOMPUTERS

A. Analysis of the NERSC workload and the GPU readiness
of NERSC applications

Over 600+ different applications are regularly run on
NERSC systems. In 2014 the top 13, 25 and 50 codes
comprised 50%, 66% and 80% of the CPU time [7].

NERSC regularly conducts an analysis of the workload
on its systems to understand application requirements and
guide procurements. Historically this analysis has included
science area, application code, algorithm, job size, thread
usage, memory usage, library usage and I/O characteristics.
The data is sourced from system monitoring tools and job
accounting databases.

In the most recent analysis, an assessment of GPU readiness
of the top NERSC applications was added. The top-50 cycle-
consuming applications were binned into the GPU-readiness
categories listed in Table I. The assessment was primarily
based on a literature survey, but conversations with application
developers and empirical analysis of some codes was also
done. For a code to be considered “enabled” for a GPU, most
features of the code must be ported in an officially recognized
and available branch of the application. Figure 1 shows the
breakdown of the NERSC workload weighted by net CPU time
consumed during the period of July 2017 to August 2018.



B. Benchmark suite construction

Benchmark selection is critical to ensuring that SSI (or
other composite application metrics) accurately estimate the
throughput of the anticipated workload. The selected bench-
marks must include all of the workload’s key algorithms,
and weights may be used to quantify their prevalence. In
some cases, the predominant applications may not be suitable
benchmarks due to licensing restrictions, exceedingly complex
build procedures or export controls, making it necessary to
represent those codes with mini-applications or other algo-
rithmically similar codes. For example, Figure 1 indicates
that the most heavily used application at NERSC is VASP,
which is subject to license restrictions. In our benchmark
suite, we use Quantum Espresso to represent VASP because
it implements many of the same capabilities and algorithms,
but is open source. Judicious benchmark selections may also
include applications that are likely to become important during
the lifetime of the system; DeepCAM does not contribute
significantly to NERSC’s current workload, but is included
among our benchmarks to represent the rapidly growing space
of deep learning algorithms.

The following paragraphs give brief descriptions of a suite
of applications and their performance on various platforms.
The purpose of this section is not to be a formal analysis
comparing the performance of a GPU based system to a CPU
based system, but to provide a reasonable basis for applying
the heterogeneous SSI calculations. Some of the results were
collected empirically using current generation platforms, while
others were taken from published literature.

Quantum Espresso: Quantum ESPRESSO is an open-
source Materials Science application that computes the elec-
tronic structure of materials via Density Functional Theory
(DFT) and related approaches in a plane-wave basis set. The
code is largely written in FORTRAN-90 with MPI+OpenMP
support throughout. The GPU branch is currently under-
development, utilizing CUDA FORTRAN and accelerated
math libraries. The problem benchmarked was a SCF opti-
mization.

MILC: The MILC code is a widely used, computationally
intense application designed to compute the interactions of
quarks and gluons as described by the theory of quantum
chromodynamics (QCD). The computational grid is a four-
dimensional space-time grid (zx,y, z,t) with quark fields, de-
fined as three-dimensional complex vectors, at the grid points
and gluon variables, defined as 3x3 unitary matrices, defined
at the ‘links’ between grid points. The most computationally
intense part is the conjugate gradient solver which determines
how the motion of the quarks is affected by the gluons [8].
The baseline code has fine-grain parallelism implemented with
OpenMP directives, mostly on loops over all grid points in
the lattice [9]. There is a GPU optimized version using the
QUDA library for lattice QCD calculations [10], and an Intel
CPU optimized version using the QPhiX library [11]. These
optimized versions are used for this study.

StarLord: StarLord [12] is a proxy application for the

adaptive-mesh compressible radiation hydrodynamics code
Castro [13]-[16]. It contains a subset of capabilities available
on Castro, chiefly a solver for 3-D equations for compress-
ible hydrodynamics, as well as an equation of state which
is computed in each cell on the grid. The AMReX [17]
framework on which StarLord is based is written primarily in
C++, while the majority of the kernels which compute floating-
point arithmetic in StarLord are written in Fortran. StarLord
uses CUDA Fortran to launch kernels on GPUs. The most
time-consuming functions in a typical StarLord simulation
are the calculation of the equation of state in each cell, and
the piecewise-parabolic method calculations for evolving the
fluid flow. These functions and most others are performed in
CUDA kernels; consequently, the majority of execution time
in StarLord is spent in the GPU, with little data being copied
between GPU and the host CPU.

DeepCAM: DeepCAM is a Google TensorFlow [18], [19]
based application for segmenting out extreme weather phe-
nomena in multivariate data obtained from climate simulations
using the 0.25 degree resolution Community Atmospheric
model (CAMS). DeepCAM is based on the recently introduced
DeepLabv3+ [20] neural network architecture and performs a
per-pixel classification task on the input data. It employs a
convolutional encoder based on ResNet-50 [21]. In contrast to
a decoder based on a combinations of bilinear extrapolations
and conditional random fields, we employ a de-convolutional
decoder which can reconstruct information with pixel-level
resolution. Most of the time in a forward and backward pass is
spent in these (de-)convolutional layers and the total number
of FLOPs for each pass and layer can easily be computed.
The performance in terms of FLOP/s can then be obtained by
timing the forward and backward passes. We also compute
a throughput number in terms of images/s, which reflects
the number of samples (16-channel 768x1152 images) the
code can ingest per second for a complete pair of forward
and backward pass. In order to achieve high performance,
TensorFlow makes use of the optimized libraries cuDNN [22]
on NVIDIA GPUs and MKL-DNN [23] on contemporary Intel
CPUs. The code can be executed in half (FP16) or single
precision (FP32), where native FP16 support is only available
for the NVIDIA Volta architecture.

GTC: GTC is a Particle In Cell (PIC) code used to
study plasma microturbulence in magnetic confinement fusion
devices known as tokamaks. GTC solves the 5D gyrokinetic
Vlasov equation on a 3D toroidal grid. The stages in time
evolution are: interpolate particle charge onto the grid, solve
the gyrokinetic Poisson equation, compute an electric field,
interpolate the electric field onto the particles, and move the
particles. The particle to grid and grid to particle interpolations
typically dominate run-time and are challenging to execute
efficiently on GPUs because of synchronization requirements
and irregular memory access pattern, respectively. The version
of GTC used in this paper was developed by Princeton Plasma
Physics Laboratory and is referred to as GTC-P [24]. It
is parallelized with MPI and OpenMP and contains CUDA
kernels for both of the interpolation stages and for moving



TABLE II
PLATFORMS USED TO COLLECT PERFORMANCE RESULTS

Name CPU GPU Node CPU:GPU
NVIDIA PSG P100  Intel Haswell NVIDIA P100 2:4
OLCF Summit IBM Power-9 NVIDIA V100 2:6
OLCF Summit-dev IBM Power-8 NVIDIA P100 2:4
CSCS Piz Daint Intel Haswell NVIDIA P100 1:1
NERSC Cori-P1 Intel Haswell N/A 2:0
NERSC Cori-P2 Intel KNL N/A 1:0

particles [25]. This version of GTC is different from the
University of California-Irvine version of GTC, which is
written in OpenACC and co-developed with NVIDIA [26],
[27].

C. Application benchmark results

Our baseline CPU-only architecture consists of dual-socket
Haswell nodes similar to the Cori-P1 system. To estimate
the performance of a hypothetical accelerated node with two
Haswell sockets and four NVIDIA V100 GPUs, we measured
GPU speedups using a variety of platforms listed in Table II
and applied the following transformations to our measured
results:

e A 1.5x performance gain when going from a P100 GPU
to a V100 GPU (based on memory bandwidth improve-
ment)

e A 4x performance gain when going from 1 GPU to 4
GPUs (i.e. perfect weak scaling between GPUs)

o A 0.5x performance gain when going from a KNL CPU
or Power 9 CPU to a Haswell CPU

e A 1x gain when going from a Power 8§ CPU to a Haswell
CPU

Although some of these assumptions may be unrealistically
optimistic, our goal is to provide a data set that is sufficiently
accurate for architectural exploration, not precise performance
models for each benchmark.

The results are shown in Table III and the transformed
values are in Table IV. From a practical perspective, it is
likely that some applications cannot be accelerated or that
there will not be sufficient resources to move the application to
accelerators. To account for this component of the workload,
Table IV also includes three applications that are not optimized
for GPUs. For these entries, the GPU speedup is specified to
be 1.0x, as a GPU node contains the same dual-socket CPU
socket configuration and can be used without the GPU.

V. APPLYING HETEROGENEOUS SSI

In this section we apply the use of heterogeneous SSI on
the results of the previous section and illustrate its use when
all applications run on all partitions. We then show that for
optimal performance it’s necessary to use node specialization
and placement by optimizing the f; , factors.

A. An iso-cost method to determine partition sizes

We apply heterogeneous SSI by doing an iso-cost sensitivity
analysis for the workload in Table IV. It should be noted
that the speedup values in Table IV are agnostic of node
cost and assume both the CPU and GPU partitions are full
system size. To perform an iso-cost comparison we must adjust
the utilization values relative to the size of the respective
partitions which depends on the CPU:GPU cost ratio. For
example, in this analysis we assumed a compute node budget
of 10,000 units. If the cost of a CPU node is 1 unit and a
GPU node is 8 units and if we set the fraction of the budget
for GPU nodes at 0.4 then the number of GPU nodes in
the system is %W = 500, the number of CPU nodes
is 10,000 — 500 x 8 = 6,000 and the total system size is
6,500 nodes. The utilization factor in the SSI metric takes
into account the size of the system, so if the GPU partition
goes from 10,000 units to 500 units then we must adjust the
utilization factor accordingly.

Prior to the iso-cost refactoring, we choose to set the initial
¢i Ui p = 1.0 to make this example easy to understand. This is
valid because n; is the same for both the CPU and GPU results
contained in Table IV and hence before iso-cost refactoring
Ui p is the same for both node types in a full 10,000 node
configuration. We then refactor the SSI contribution of each
application by adjusting U; ,, accordingly based on the iso-cost
node counts. For example, using the partition sizes calculated

above, the adjusted c; U; , S; , = 10905 = 0.05 for the GPU
6,000 '

partition and = 16,000 = 0-0 for the CPU partition. Applying
this to the Quantum Espresso speedup in Table IV, its new
contribution becomes 15.12 x 0.05 = 0.756 and 1.0 x 0.6 =
0.6 for the GPU and CPU partitions respectively. We then
apply this adjustment to all the applications and calculate a
heterogeneous SSI, illustrated in Figure 2 where the budget
used for the GPU partition varies from 0% to 100%.

It should be noted that for a CPU only partition, the SSI
value is 1.0. Hence, if SSI>1.0, then there is a benefit
provided by the GPU partition. When the CPU:GPU cost ratio
is 1:8, the added performance of the GPU nodes does not offset
the cost premium for any fractional budget. As the cost ratio
decreases, we see there is a benefit and for the case of the
ratio being 1:4 the performance improvement is 1.23x for a
fractional budget of 0.52. Figure 2 also illustrates the impact of
improving the performance of the codes on the GPU partition.
The nominal SSI of just the GPU accelerated applications
is ~10. As improvements are made to the codes the SSI
will increase and hence change the threshold for which the
GPU partitions performance offsets a cost premium. Here we
show performance improves as the SSI of the GPU partition
increases to 20 and then 30 where the improvement approaches
1.4x with a fractional budget of 58%. This illustrates the
importance of activities such as facility centers of excellence in
which the system and technology providers work closely with
the application teams to ensure their codes run optimally.



TABLE III
APPLICATION SPEEDUP WHEN COMPARING A CPU+GPU PLATFORM TO A CPU PLATFORM. THE RESULTS ARE OBTAINED BY USING ALL CPUS AND
GPUS IN A NODE UNLESS THE PLATFORM NAME IS SUFFIXED BY TEXT IN PARENTHESIS, I.E. (CPU COUNT USED : GPU COUNT USED).

Name CPU Platform CPU+GPU Platform Nodes Speedup  Notes
Quantum Espresso Piz Daint (1:0) Piz Daint 2 5.04
MILC Cori-P2 Piz Daint 256 169 Used a 128x128x128x128 lattice
Starlord Cori-P1 Summit-dev 16 1.59
DeepCam Cori-P2 Summit (1:1) 1 15.35 Used 1 worker in FP32 precision
GTC-P PSG P100 (2:0) PSG P100 1 536  Used problem size A [25] with 4 toroidal domains
~¥—GPU/CPU node cost =4 —— GPU/CPU node cost = 8 TABLE IV
s GPU/GPU node cost = 6 ESTIMATED APPLICATION SPEEDUP WHEN COMPARING A DUAL-SOCKET
14 : ‘ ‘ ‘ HASWELL NODE WITH 4 NVIDIA V100 TO A DUAL-SOCKET HASWELL
_ NODE.
1.2 Name Nodes CPU Speedup GPU Speedup
& CPU only Appl - 1.0 1.0
(%) CPU only App2 - 1.0 1.0
510 CPU only App3 ; 1.0 1.0
@ Quantum Espresso 1 1.0 15.12
& MILC 256 1.0 10.16
5 08 Starlord 16 1.0 2.39
% DeepCam 1 1.0 30.70
GTC-P 1 1.0 8.05
0.6
0_40_0 03 07 e o8 10 B. Optimizing application placement to improve SSI
Fraction of budget spent on GPU nodes In this section we consider the effect of specialization on
(a) Tso cost, CPU:GPU cost ratio of 1:4, 1:6 and 1:8 the heterogeneous SSI score. The mapping of applications to
partitions is specified using the f;, variable in Equation 7.
—+— Speedup (GPU) = 10 —¥— Speedup (GPU) = 30 This becomes a constrained optimization problem in which
—>¢ Speedup (GPU) = 20 fip can be varied in order to maximize SSI.
14 ! ‘ Figure 3 compares SSI scores with and without special-
ization on a system with GPU node cost = 8x CPU node
1o cost. The data points marked with “Default” label are obtained
_ using f; ,=0.125 for all applications and partitions. The results
@ . match those in Figure 2a. The data points marked with
g 1.0 1 “Specialized” label consider a sensible initial set of values
% for f;, in which the 3 CPU applications are run on the CPU
o8 partition only (f; ,=0.333) and the 5 GPU applications are run
2 on the GPU partition only (f; ,=0.2). Finally, the data points
T marked with “Specialized-optimized” are optimal values of
0.6 fip for each machine configuration. We obtain the values
r using the Sequential Least Squares Programming (SLSQP)
04 solver in SciPy’s optimize.minimize function.

0.0 0.2 04 06 0.8 10
Fraction of budget spent on GPU nodes

(b) Iso cost, SSI of the GPU is 10, 20 and 30

Fig. 2. An iso-cost heterogeneous SSI sensitivity analysis for the workload
in Table IV. In a) the cost of a GPU node relative to a CPU node varies from
1:8 to 1:4. If a GPU node costs 8 times more than a CPU node then a GPU
partition may not be justified, assuming the nominal Speedup (GPU) = 10.
But as the price ratio drops the GPU partition becomes more desirable. In b)
the CPU:GPU cost is fixed at 1:8 and the Speedup of the applications in the
GPU partition varies from 10 to 30. This illustrates the impact of improving
the performance of applications that use the GPU partition. The circle on
each iso cost curve represents a system with 50% CPU nodes and 50% GPU
nodes.

The results show that a naive specialized mapping performs
worse than a default mapping when less than 30% of the
budget is spent on GPUs. This is because the utilization factors
U; p for the GPU applications are relatively small on the GPU
partition given the small size of the GPU partition and are zero
on the CPU partition. In contrast, an optimized specialized
mapping improves upon the default mapping even when less
than 30% of the budget is spent on GPUs. We find that
at 5% of the budget, an optimal mapping involves running
DeepCam on the GPU partition and all other applications
on the CPU partition. The dramatic speedup of this machine
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Fig. 3. The impact of specialization on the heterogeneous SSI metric for a
system in which a GPU node costs 8x a CPU node. Default indicates that each
application on each partition is assigned f; ,=0.125. Specialized indicates
that the CPU applications are assigned f; ,=0.333 on the CPU partition and
the GPU applications are assigned f; ,=0.2 on the GPU partition. Finally,
Specialized-optimized indicates the combination of f; ;, leading to the highest
SSI score. The circle on the Specialized-optimized iso cost curve indicates
the system configuration giving the highest SSI score. This is a system with
50% of the budget spent on GPUs.

learning application on GPUs is enough to overcome the
relatively small utilization factor on the small GPU partition.
The optimized specialized mapping continues to change as
more of the budget is spent on GPUs. In particular, we find that
the solver places more of the GPU applications on the GPU
partition in the order of highest GPU speedup first. The highest
heterogeneous SSI score is obtained when 50% of the budget
is spent on GPUs. At this machine configuration, the solver
assigns factors of 0.25 for all CPU applications and Starlord
on the CPU partition and factors of 0.25 for the remaining
GPU applications on the GPU partition. This shows that there
can be an overall throughput win for the aggregate workload
by leaving applications with relatively small GPU speedups
on the CPU partition. The naive specialized mapping is the
same as the optimal specialized mapping when 85% or more
of the budget is spent on the GPU partition.

Figure 4 shows the heterogeneous SSI for different machine
configurations when considering specialization. The earlier
results in Figure 2a showed that the GPU nodes only delivered
a significant benefit to the representative workload when a
GPU node cost 4x a CPU node. The results in Figure 4 show
that an optimized specialized mapping can improve the overall
score even when a GPU node costs much more than 4x a CPU
node. The results also show that devoting the entire budget to
GPU nodes leads to a poor heterogeneous SSI score.

VI. DISCUSSION

In an era of extreme-heterogeneity, the potential tension
between capacity- and capability computing may become more

—+—GPU/CPU node cost =4 —¥— GPU/CPU node cost = 8
——GPU/CPU node cost = 6

o
o
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Fig. 4. The impact of specialization on the heterogeneous SSI score for a
system in which a GPU node costs 4x, 6x and 8x a CPU node. The SSI score is
obtained by using the optimal choice of f; , for each machine configuration.
The circle on each iso cost curve represents a system with 50% CPU nodes
and 50% GPU nodes.

pronounced. Although heterogeneity and specialization can
clearly improve the throughput of a capacity workload (evident
in the maxima depicted in Figures 2-4), as resources are
divided across multiple partitions, the individual partitions
become smaller and running a single capability job that uses
all partitions effectively becomes more difficult.

The SSI metric described in this paper can be used to
understand and quantify the impact of prioritizing one of these
goals over the other. Consider the red curve in Figure 4, which
corresponds to a 4x price difference between CPU-only and
GPU-accelerated nodes. The highest throughput (i.e. capacity)
occurs when 50% of the budget is spent on GPU nodes. This
system has 5000 CPU nodes and 1250 GPU nodes. There is a
capability trade-off because alternative iso cost configurations
with either 10000 CPU-only nodes or 2500 GPU nodes would
permit 2x larger CPU-only or GPU jobs.

There are also circumstances when heterogeneity is not
beneficial. This could occur when the entire workload benefits
from the same accelerator; if the benchmark suite consisted of
only DeepCam and GTC-P, then an all-GPU system would be
most cost effective. At the opposite end of the spectrum, it is
not feasible to field specialized accelerators for each element
of a highly diverse or rapidly evolving workload.

Workflow requirements also complicate the cost/benefit
analysis of heterogeneous computing; if different stages of
the same computational pipeline have substantially different
performance characteristics, would their combined workflow
be better served by general purpose processors or a mix of spe-
cialized accelerators (i.e. extreme heterogeneity)? Given the
vast range of software diversity, particularly when workflows
require tight coupling between accelerator types, it seems



nearly certain that HPC centers will continue to provide large
deployments of general purpose processors for many years to
come.

VII. CONCLUSION

Historically, the majority of large-scale supercomputers
have had a homogeneous compute node and users of that
machine only had to worry about porting to a single archi-
tecture. But there is currently much research and development
of domain specific, or even application specific, integrated
circuits that may be very attractive to deploy to accelerate
key applications. In order to take advantage of these develop-
ments, more and more supercomputer centers are going to be
deploying machines with more than a single node type, and in
some cases this will most likely be more than two node types.
NERSC has done this with its the current Cori supercomputer
and plans at least two node types with the future NERSC-9,
which is scheduled for delivery in 2020.

In this paper we have developed a formulation and method-
ology for quantifying the performance of a heterogeneous
supercomputer using a single metric, heterogeneous SSI. We
have applied heterogeneous SSI using data collected on current
generation Intel Xeon® and NVIDIA GPU based node types
and demonstrated how it can be used to help gauge how
one would allocate their budget based on the accelerated
application performance on the GPU nodes. The first example
assumes that all applications can run on all platforms. We
then demonstrated that node specialization and optimization
of application placement on the different partitions can be
used to significantly increase overall workload throughput, and
in some scenarios the combination of accelerator nodes and
optimized placement can nearly double the overall throughput,
illustrating the importance of careful evaluation of workloads
and their affinity for various accelerators.
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APPENDIX A
ARTIFACT DESCRIPTION APPENDIX: [A METRIC FOR
EVALUATING SUPERCOMPUTER PERFORMANCE IN THE
ERA OF EXTREME HETEROGENEITY |

A. Abstract

The key contribution of this paper is the definition of a
metric for measuring performance of a system composed of
a heterogeneous mix of node types. All of the equations are
provided in the body of the paper and the input data for the
sample calculations are in Table IV. The Python script used
to optimize the f; , coefficients of the hetero-SSI formula and
to generate the CPU:GPU cost tradeoff plots in Section V is
publicly available as described below.

B. Description

1) Check-list (artifact meta information):

o Program: optimize_ssi.py

+ Run-time environment: Python

« Execution: python optimize_ssi.py

o Output: Graph files for Figures 2, 3 and 4

o Publicly available?: Yes

2) How software can be obtained:
The script can be downloaded from
http://portal.nersc.gov/project/m888/reproducibility/optimize_ssi.py.

3) Software dependencies: We used Python version 2.7.13.
The script depends on the following Python packages which
may need to be installed separately (the versions we used are
shown in parenthesis):

e NumPy (1.8.0)

o SciPy (0.16.0)

o Matplotlib (1.4.3)

4) Datasets: The speedup data from Table IV are embedded
in the source code. Alternative data can be used by modifying
lines 10 through 14.

C. Evaluation and expected result
The script will produce the following files:
o Figure 2a: hetero-ssi-cost.png
o Figure 2b: hetero-ssi-mean.png
o Figure 3: opt_v_noopt.png
o Figure 4: optimal_ssi.png



