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Abstract—Training scientific deep learning models requires the
large amount of computing power provided by HPC systems.
In this paper, we use the distributed deep learning framework
Horovod to parallelize NT3, a Python benchmark from the
exploratory research project CANDLE (Cancer Distributed
Learning Environment). We analyze NT3’s scalability, perfor-
mance, and power characteristics with different batch sizes and
learning rates under two memory modes, cache and flat, on the
DOE pre-exascale production system Cray XC40 Theta at Ar-
gonne National Laboratory. Our experimental results indicate
that the power profiles for the node, CPU, and memory are
useful in showing how the Horovod NT3 benchmark behaves
on the underlying system. Using the communication timeline
of this benchmark, we found that the Horovod communication
overhead in NT3 increases significantly with the number of
nodes although Horovod has the ability to scale up. The bench-
mark leads to smaller runtime and lower power consumption
for the node and CPU under the cache mode than under the
flat mode. Furthermore, increasing the batch size leads to a
runtime decrease and slightly impacts the power. Increasing
the learning rate results in a slight decrease in runtime and
node power and an increase in accuracy. Several issues raised
by the Horovod NT3 benchmark results are discussed, and
suggestions are proposed for further work.

1. Introduction

Training modern deep learning models requires the large
amount of computing power provided by high-performance
computing (HPC) systems. TensorFlow [2] [22] is one of
the most widely used open source frameworks for deep
learning; it supports a wide variety of deep learning uses,
from conducting exploratory research to deploying models
in production on cloud servers, mobile apps, and even self-

driving vehicles [20]. Horovod [11] [20], developed by
Uber, is a distributed training framework for TensorFlow and
Keras [12]. In this work, we use Horovod to parallelize NT3,
a Python-based benchmark [6] from the exploratory research
project CANDLE (Cancer Distributed Learning Environ-
ment) [4]. We then analyze the Horovod implementation
of NT3 in terms of performance, power, and scalability on
the DOE pre-exascale production system Cray XC40 Theta
[9] at Argonne National Laboratory.

The CANDLE project [4] [25] focuses on building a
single scalable deep neural network code that can address
three cancer challenge problems: the RAS pathway problem,
understanding the molecular basis of key protein interactions
in the RAS/RAF pathway presented in 30% of cancers;
the drug response problem, developing predictive models
for drug response to optimize preclinical drug screening
and drive precision-medicine-based treatments for cancer
patients; and the treatment strategy problem, automating
the analysis and extraction of information from millions of
cancer patient records to determine optimal cancer treatment
strategies. CANDLE benchmark codes [5] implement deep
learning architectures that are relevant to these three cancer
problems. The NT3 benchmark [6] is one of the Pilot1
benchmarks [5] that are formed from problems and data at
the cellular level. The goal behind these Pilot1 benchmarks
is to predict the drug response based on molecular features
of tumor cells and drug descriptors.

The NT3 benchmark, like other CANDLE benchmarks,
is implemented in Python by using the Keras framework.
Python allows for the rapid development of the application.
It also enables code reuse across the CANDLE benchmarks,
since each benchmark uses common Python-based CAN-
DLE utilities and each benchmark implements a common
interface used by higher-level Python-based driver systems,
such as the CANDLE/Supervisor framework for hyperpa-



rameter optimization [25]. These benchmarks, which are
intended to run on exascale systems as they emerge, are cur-
rently being tested on pre-exascale systems such as Theta.
These pre-exascale systems feature new hardware at ever
greater scale, requiring new analysis of performance and
power to determine how best to use them. Deep learning
is expected to play a greater role in scientific computing
on systems such as Summit [21]. Thus, it is critical for
studying the performance and power usage of the whole
application stack, including the scripting level, numerics,
and communication.

To speed TensorFlow applications by utilizing large-
scale supercomputers such as Theta requires a distributed
TensorFlow environment. Currently, TensorFlow has a na-
tive method for parallelism across nodes using the gRPC
layer in TensorFlow based on sockets [1] [10], but this is
difficult to use and optimize [15] [20]. The performance
and usability issues with the distributed TensorFlow can
be addressed, however, by adopting an MPI communication
model. Although TensorFlow has an MPI option, it replaces
only point-to-point operations in gRPC with MPI and does
not use MPI collective operations. Horovod adapts the MPI
communication model by adding an allreduce between the
gradient computation and model update, replacing the native
optimizer with a new one called the Distributed Optimizer.
No modification to TensorFlow itself is required; the Python
training scripts are modified instead. The Cray programming
environment machine learning plugin (CPE ML Plugin)
[15], like Horovod, does not require modification to Ten-
sorFlow, but it is designed for Cray systems and is not
available to the public. Therefore, we chose Horovod for
this investigation.

Related work with Horovod and TensorFlow has been
reported in the literature. A. Sergeev and M. Del Balso [20]
designed and developed Horovod, and they used the Tensor-
Flow benchmarks [23] such as Inception V3 and ResNet-
101 to compare the performance (images per second) of
the Horovod implementations with standard distributed Ten-
sorFlow on different numbers of NVIDIA Pascal GPUs.
They observed larger improvements in Horovod’s ability to
scale, and the training in the Horovod implementation was
about twice as fast as standard distributed TensorFlow. P.
Mendygral et al. [15] discussed the Horovod-like Cray CPE
ML Plugin, and they used TensorFlow benchmarks such as
Inception V3 and ResNet50 to compare the performance
(samples per second) of the CPE ML Plugin implementa-
tions with standard distributed TensorFlow with gRPC and
Horovod on a Cray XC40 system. They observed that the
CPE ML Plugin outperformed both Horovod and standard
distributed TensorFlow. They also discussed convergence
considerations at scale in deep learning and presented square
and linear learning rate scaling rules. They found that the
scaling rules are more attractive (when they work) because
they do not require many additional iterations to reach the
same accuracy.

In this paper, we analyze the Horovod parallel imple-
mentation of the NT3 benchmark, focusing on its scalabil-
ity, performance, and power characteristics with different

batch sizes and learning rates under two memory modes,
cache and flat (a high bandwidth on-package memory Multi-
Channel DRAM can be configured as a shared L3 cache
(cache mode) or as a distinct NUMA node memory (flat
mode)), on the Cray XC40 Theta. Our experimental results
indicate that power profiling for the node, CPU, and memory
is useful for showing how the Horovod NT3 benchmark
behaves on the system. Using the communication timeline
of this benchmark, we find that the Horovod communication
overhead in NT3 increases significantly with the number of
nodes. The benchmark leads to smaller runtime and lower
power consumption for the node and CPU under cache mode
than under flat mode. Furthermore, increasing the batch size
leads to a runtime decrease and slightly impacts the power;
and increasing the learning rate results in a slight decrease
in runtime and node power and an increase in accuracy.

This work makes the following contributions.

• We use Horovod to parallelize the CANDLE NT3
benchmark. This parallelization method can be ap-
plied to other CANDLE benchmarks such as the
Pilot1 and Pilot3 benchmarks in the similar way.

• We analyze the scalability of the Horovod imple-
mentation of the NT3 benchmark with weak scaling,
and we discuss the Horovod overhead.

• We investigate the performance and power charac-
teristics of the Horovod implementation of the NT3
benchmark with strong scaling, and we use power
profiling to analyze how parameters such as the
learning rate and batch size affect the performance
and power.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly describes the CANDLE NT3 benchmark and
Horovod and then discusses the Horovod implementation.
Section 3 depicts the system platform Cray XC40 Theta.
Section 4 analyzes the scalability of the Horovod imple-
mentation of the NT3 benchmark with increasing numbers
of nodes. Section 5 uses the experimental results to analyze
performance and power characteristics of the NT3 bench-
mark. Section 6 summarizes our conclusions and discusses
future work.

2. CANDLE NT3 Benchmark and Its Horovod
Implementation

In this section, we briefly describe the CANDLE NT3
benchmark and the distributed deep learning framework
Horovod. We then discuss the Horovod implementation of
the benchmark in detail.

2.1. CANDLE NT3 Benchmark

The CANDLE NT3 benchmark [6] is written in Python
and Keras, which is a high-level neural network API written
in Python and capable of running on top of TensorFlow,
CNTK [16], or Theano [24]. This benchmark is a 1D con-
volutional network for classifying RNA-seq gene expression
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Figure 1. Schematic of NT3 neural network architecture.

profiles into normal or tumor tissue categories. This network
follows the classic architecture of convolutional models with
multiple 1D convolutional layers interleaved with pooling
layers followed by final dense layers. This model is trained
on the balanced 700 matched normal-tumor gene expression
profile pairs available from the NCI Genomic Data Com-
mons and acts as a quality control check for synthetically
generated gene expression profiles. The full dataset of ex-
pression features contains 60,483 float columns transformed
from RNA-seq FPKM-UQ values [6] that map to a column
that contains the integer 0|1. Hence the NT3 benchmark
is useful for studying the difference and transformation of
latent representation between normal and tumor tissues.

The NT3 architecture is depicted in Figure 1. The input
data is first processed by a variable number of pairs of
convolution-pooling layers, controlled by parameters conv,
with layer unit counts specified by the numbers in the conv
list. relu is used as the activation function. Then, the
signal flows into a various number of pairs of dense-dropout
layers controlled by the dense list and dropout specifier
(dropout may be omitted for no dropouts). Finally, a
softmax function is used to obtain the output, and scores
for Normal and Tumor which add to 1. The NT3 bench-
mark entails four phases: data loading, preprocessing, basic
training and cross-validation, and prediction and evaluation
on test data. It uses the following main global parameters.

data_url = ’ftp://ftp.mcs.anl.gov/pub/candle/public/
benchmarks/Pilot1/normal-tumor/’
train_data = ’nt_train2.csv’
test_data = ’nt_test2.csv’
model_name = ’nt3’
conv=[128, 20, 1, 128, 10, 1]
dense=[200,20]
activation=’relu’
out_act=’softmax’
loss=’categorical_crossentropy’
optimizer=’sgd’
metrics=’accuracy’
epochs=400
batch_size=20
learning_rate=0.001
drop=0.1
classes=2
pool=[1, 10]
save=’.’

The size of the training data file nt_train2.csv is
597MB, and the size of the test data file nt_test2.csv
is 149MB. The benchmark uses the importing data function
pandas.read_csv() [18] with FTP to remotely read
the data files; the optimizer is SGD (stochastic gradient
descent); the number of epochs is 400, where for each epoch

the model training has a full pass through the whole dataset
and the key parameters (accuracy, loss, ...) are saved for re-
training the model in the next epoch; the batch size is 20;
and the learning rate is 0.001.

2.2. Horovod

Horovod [11] [20] is a distributed training framework
for TensorFlow and Keras and is a stand-alone Python
package developed by Uber. The goal of Horovod is to
make distributed deep learning fast and easy to use. The
core principles of Horovod are based on MPI concepts such
as size, rank, local rank, allreduce, allgather, and broadcast;
and it is implemented by using MPI subroutines. A unique
feature of Horovod is its ability to interleave communica-
tion and computation. Moreover, it is able to batch small
allreduce operations by combining all the tensors that are
ready to be reduced at a given moment into one reduction
operation, an action that results in improved performance.
The Horovod source code is based on the Baidu tensorflow-
allreduce repository [3]. Horovod provides MPI-based data
parallelism for TensorFlow. In its examples [11], it provides
the parallelization at the epoch level (keras mnist.py) and
at the batch step level (keras mnist advanced.py).

2.3. Using Horovod to Parallelize the NT3 Bench-
mark

As described in [11], to use Horovod, we made the
following additions to the NT3 benchmark to utilize CPUs:

• Add import horovod.tensorflow as hvd
to import the Horovod package.

• Add hvd.init() to initialize Horovod.
• Obtain the size (hvd.size()) and rank

(hvd.rank()), and adjust the number of
epochs based on the number of CPU nodes used as
follows.
nprocs = hvd.size()
myrank = hvd.rank()

def comp_epochs(n, myrank=0, nprocs=1):
j = int(n // nprocs)
k = n % nprocs
if myrank < nprocs-1:

i = j
else:

i = j + k
return i

epochs =
comp_epochs(gParameters[’epochs’],

myrank, nprocs)

We use comp_epochs() to calculate the number
of epochs for each node. For load balancing, we
ensure that the number of epochs is the same for
each node.

• Scale the learning rate by the number of
workers. We scaled the learning rate to
learning_rate× hvd.size(). We properly
increased the batch size as well.



Figure 2. Cache mode on Cray XC40 Theta

Figure 3. Flat mode on Cray XC40 Theta

• Wrap the original optimizer in the Horovod
distributed optimizer using optimizer =
hvd.DistributedOptimizer(optimizer).
The distributed optimizer delegates the gradient
computation to the original optimizer, averages
gradients using MPI_Allreduce(), and then
applies those averaged gradients.

• Add
hvd.BroadcastGlobalVariablesHook(0)
to the callbacks to broadcast initial variable states
from rank 0 to all other processes. This step ensures
consistent initialization of all workers when training
is started with random weights.

3. System Platform: Cray XC40 Theta

We conducted our experiments on the Cray XC40 Theta
[9], which is a pre-exascale production system at Argonne
National Laboratory. Each Cray XC40 node has 64 compute
cores (one Intel Phi Knights Landing (KNL) 7230 with the
thermal design power (TDP) of 215 W), shared L2 cache
of 32 MB (1 MB L2 cache shared by two cores), 16 GB
of high-bandwidth in-package memory, 192 GB of DDR4
RAM, and a 128 GB SSD. The Cray XC40 system uses the
Cray Aries dragonfly network with user access to a Lustre
parallel file system with 10 PB of capacity and 210 GB/s
bandwidth. Cray XC40 [8] [14] provides power management
to operate more efficiently by monitoring, profiling, and
limiting the power usage. In this work, we use a simplified
PoLiMEr library [13], which utilizes Cray’s CapMC [14]
to measure power consumption for the node, CPU, and
memory at the node level on Theta. The power sampling
rate used is approximately two samples per second (default).
In a Python code, we import ctypes to export the CDLL for
loading the shared PoLiMEr library in order to measure the
power for the code.

Each XC40 node has one Intel KNL, which brings in
new memory technology, an on-package memory called
Multi-Channel DRAM (MCDRAM) in addition to the tra-
ditional DDR4 RAM. MCDRAM has a high-bandwidth
(around 4 times more than DDR4 RAM) and low-capacity
(16 GB) memory. MCDRAM can be configured as a shared

TABLE 1. RUNTIME (S), POWER (W), AND ENERGY (J) OF THE
SINGLE-NODE NT3 BENCHMARK WITH DIFFERENT BATCH SIZES UNDER

CACHE MODE.

L3 cache (cache mode) shown in Figure 2 or as a distinct
NUMA node memory (flat mode) shown in Figure 3. For
the flat mode, the default memory allocation preference is
DDR4 first, then MCDRAM. With the different memory
modes by which the system can be booted, understanding
the best mode for an application becomes challenging for
the user.

4. Scalability Analysis

In this section, we investigate the performance and
power characteristics of the original NT3 benchmark under
different memory modes. We then analyze the scalability of
the Horovod NT3 benchmark for our weak-scaling study.

4.1. Original NT3 Benchmark under Different
Memory Modes

The number of epochs is 400 for the NT3 benchmark.
For simplicity, in this section we use just one epoch to
conduct the experiments under a learning rate of 0.001 and
a batch size of 20.

Figure 4 shows power over time on Theta, with cache
mode on one node and epochs = 1. The runtime is 1567s,
and the average power is 159.21 W for the node, 105.26 W
for the CPU, and 12.08 W for memory. We observe that
NT3 takes around 800s to do the data loading and pre-
processing because of the FTP remote data access used by
pandas.read_csv() in the benchmark.

Figure 5 shows power over time on Theta (with flat mode
on one node and epochs = 1). The runtime is 1608s, and the
average power is 164.37 W for the node, 110.37 W for the
CPU, and 17.0 W for memory. Comparing the cache mode
with the flat mode, we observe that the NT3 benchmark
under cache mode results in better performance and lower
power consumption in the node and CPU. The memory
power consumption is lower because the MCDRAM con-
figured as the L3 cache is enough to hold both data files in
the cache.

In the experiments, we used an initial batch size of 20
as default. We then changed the batch size to determine
its effect on the performance and power of NT3. Table 1
shows the runtime, power, and energy of the benchmark
with different numbers of batch sizes under cache mode.
We ran the same experiment several times to ensure the



Figure 4. Power over time on Theta (with cache mode on one node and epochs = 1)

Figure 5. Power over time on Theta (with flat mode on one node and epochs = 1)

results consistent, finding that the difference in runtime is
very small (less than 0.1%). Thus, we simply used the run
with the smallest runtime to report the time and power.
Increasing the batch size results in a decrease in the runtime
and impacts the power slightly because it requires fewer
iterations to converge to the same validation accuracy for
models trained at larger batch sizes. The benchmark with a
batch size of 200 achieves the lowest energy. We find that
the benchmark fails, however, if the batch size is 300 or
larger. Thus, the batch size can be adjusted only to some
limited extent.

4.2. Horovod NT3 Benchmark

In this section, we still use one epoch and a batch size
of 20 to conduct the experiments under the cache mode on
Theta. However, we scale up the number of nodes with one
epoch per node for our weak-scaling study. We measure
the performance of the Horovod version of NT3 and use

Python’s cProfile [19] to profile the performance and analyze
NT3’s scalability on Theta.

Table 2 shows the time for different parts
of the benchmark with increasing learning rate
(0.001 * hvd.size()). The table headers are
as follows: TensorFlow, the time for the method
_pywrap_tensorflow_internal.TF_Run();
Method read, the time for the operations in
pandas._libs.parsers.TextReader; Keras
callback: the time for the Keras callbacks in
callbacks.py; Horovod callbacks, the time for
Horovod callbacks.py; Distributed Optimizer, the
time for the Horovod Distributed Optimizer; Broadcast,
the time for the Horovod broadcast itself; Allreduce, the
time for Horovod allreduce; and model.fit(), the time spent
in the model training and validation.

The Horovod distributed optimizer has small overhead,
around 1.4s even with increasing numbers of nodes, be-
cause this optimizer delegates gradient computation to the



TABLE 2. PERFORMANCE (IN SECONDS) WITH THE INCREASED LEARNING RATE (WEAK SCALING) ON THETA.

TABLE 3. PERFORMANCE (IN SECONDS) WITH THE SAME LEARNING RATE (WEAK SCALING) ON THETA.

original optimizer, averages gradients using allreduce, and
then applies those averaged gradients. Horovod callbacks
introduce some overhead, but it is relatively small. We note
that the Horovod broadcast overhead is around 0.22s and
the Horovod allreduce overhead is around 0.24s. The dom-
inant parts are data loading (Method read) and TensorFlow.
Model.fit is the main part of TensorFlow and takes most
of the execution time of TensorFlow. Because the Python
cProfile provides the time for TensorFlow only as a whole,
we have to add the inline timing for the function model.fit
to measure its runtime.

We further tested the communication overhead intro-
duced by Horovod with the same learning rate (0.001)
shown in Table 3 on Theta. Overall, the total runtime results
are slightly larger than those shown in Table 2. The Horovod
overheads for the callbacks, optimizer, broadcast, and allre-
duce are similar for both cases. Compared with the total
runtime, the Horovod overhead is relatively small. We note
that, from Tables 2 and 3, the time spent in the TensorFlow
and model.fit increases significantly—by more than 39%—
as the number of nodes increases from 2 to 512. Ideally,
if the batch size and learning rate and other parameters are
fixed, the model training time is expected to be the same.
Although Horovod has the ability to scale up, it causes the
large communication overhead within TensorFlow, however,
this overhead is not reflected from the Horovod functions
provided by the cProfile. In the following section, we further
explain this overhead using the Horovod timeline [11].

5. Performance and Power Analysis of the
Horovod NT3 Benchmark

In this section, we use the problem size from the original
NT3 benchmark for our strong-scaling study, where we fix
the number of epochs at 400, the learning rate at 0.001,
and the batch size at 20. We conduct our experiments with
different numbers of nodes under different memory modes to
analyze the performance and power behavior of the Horovod
NT3 benchmark. We focus on three metrics: the time spent
in the model.fit(), loss, and accuracy.

5.1. Cache Mode

Table 4 shows the performance for the original dataset
with epochs = 400 and the increased learning rate on Theta.
In this table, loss is the training loss; acc is the training
accuracy; val loss is the validation loss; and val acc is the
validation accuracy. Time per epoch is the total time for
model.fit() divided by the number of epochs executed.
On each node model.fit() executes a number of epochs,
which is 400 divided by the number of nodes used. Because
we did not shard the training data, each epoch makes a
complete pass through the data. Thus, epoch time apparently
increases as node count increases, but the increase is totally
due to communication overhead, allowing us to capture this
cleanly.

On 400 nodes, model.fit() executes one epoch per
node, the total runtime is 1,042s, and the time per epoch is
1,042s. On 100 nodes, model.fit() executes 4 epochs
per node, it takes 3,593s, and the time per epoch is around



TABLE 4. TIME (IN SECONDS), LOSS, AND ACCURACY FOR THE
ORIGINAL DATASET WITH THE INCREASED LEARNING RATE (STRONG

SCALING) ON THETA UNDER THE CACHE MODE

898s. On 25 nodes, model.fit() executes 16 epochs per
node, it takes 13,001s, and the time per epoch is around
813s. With increasing the number of nodes from 25 to
400, the accuracy decreases and the loss increases because
model.fit() executes fewer number of epochs. With the
increased learning rate, using 25 nodes results in a training
accuracy of 1.0 and validation accuracy of 0.9786. These
results indicate that properly increasing the learning rate
leads to better accuracy, and the model training requires the
proper number of epochs (16) to achieve the high accuracy.
We note that the time per epoch increases with increasing
numbers of nodes because the Horovod communication
overhead increases with the number of nodes.

Figure 6 shows power over time for the Horovod NT3
benchmark on 400 nodes. We found that loading the clib for
the power measurement using ctypes takes around 11s based
on the profile data from the Python cProfile. Therefore, the
data loading takes around 781s. Compared with Figure 4,
what happened after the data-loading phase? To explain the
power behavior in Figure 5, we use the Horovod timeline
feature [11] to record the communication activities viewed
in the Chrome browser through chrome://tracing [7].

Figures 7 and 8 show the timeline for the commu-
nication of the benchmark on 400 nodes with the high-
lights of broadcast and allreduce from Figure 6. This
timeline starts the broadcast communication, not the be-
ginning of the benchmark. It consists of six communica-
tion types: negotiate broadcast, broadcast, mpi broadcast,
allreduce, mpi allreduce, and negotiate allreduce, where
broadcast is implemented based on mpi broadcast shown
in Figure 7; allreduce is based on the baidu ring-
allreduce algorithm [3] and MPI_Allreduce() shown
in Figure 8. MEMCPY IN FUSION BUFFER and MEM-
CPY OUT FUSION BUFFER are to copy data into and
out of the fusion buffer. Each tensor broadcast/reduction in
the Horovod NT3 benchmark involves two major phases.

• The negotiation phase (negotiate broadcast, nego-
tiate allreduce): all workers send a signal to rank
0 that they are ready to broadcast/reduce the given
tensor. Each worker is represented by a tick under
the negotiate broadcast/negotiate allreduce bar. Im-
mediately after negotiation, rank 0 sends a signal to
the other workers to start broadcasting/reducing the
tensor.

• The processing phase: here the communication

TABLE 5. TIME (IN SECONDS), LOSS, AND ACCURACY FOR THE
ORIGINAL DATASET WITH THE SAME LEARNING RATE (STRONG

SCALING) ON THETA.

operation actually happens. These communications
in Figures 7 and 8 indicate the time taken to
do the actual operation on the CPU and highlight
that the operation was performed by using pure
MPI collectives such as MPI_Broadcast() and
MPI_Allreduce().

Based on the communication activities in Figures 7 and
8, we are able to explain the power behavior in Figure 6. Af-
ter data loading and preprocessing, the negotiate broadcast
takes place as shown in Figure 7. During the broadcast,
the node power and CPU power decrease because of the
dynamic power management on the Cray XC40. Then the
gradients are computed, so the node power and CPU power
increase. Both allreduce and MPI_Allreduce() are used
to average the gradients, and the averaged gradients are
applied. This process takes around 131s as the first allreduce
and MPI_Allreduce() shown in Figure 8. The process
takes place between 800s and 1000s in Figure 6. The model
training batch steps then are started. During the training, ne-
gotiate allreduce, allreduce, and MPI_Allreduce() take
place between two consecutive training batch steps period-
ically in Figure 8. Compared with Figure 4, this Horovod
overhead enlarges the gaps between two consecutive training
batch steps, and the power consumption is smaller than that
in Figure 4 because the internode communication is used
for gradient averaging. This explains the communication
overhead caused by Horovod within the TensorFlow run.
The learning rate is 0.001 in Figure 4 and the increased
learning rate is 0.001×400 = 0.4 in Figure 6, while keeping
other input parameter values the same.

Table 5 shows the performance for the original dataset
with epochs = 400 with the same learning rate on Theta.
Compared with Table 4, the execution time increases
slightly. For 100 nodes or more, the accuracy using the same
learning rate is much higher than that using the increased
learning rate. We note, however, that for 50 and 25 nodes,
the accuracy using the same learning rate is lower than
that using the increased learning rate. With increasing the
number of nodes from 25 to 400, the accuracy decreases and
the loss increases because model.fit() executes fewer
number of epochs. This indicates that properly increasing
the learning rate results in better accuracy, and the model
training requires the proper number of epochs to achieve the
high accuracy. Notice that the time per epoch increases with
increasing the number of nodes because of the increased



Figure 6. Power over time of the Horovod NT3 with the increased learning rate under the cache mode on 400 nodes.

Figure 7. Timeline for the communication with the highlight of broadcast of the Horovod NT3 on 400 nodes (cache mode).

Figure 8. Timeline for the communication with the highlight of allreduce of the Horovod NT3 on 400 nodes (cache mode).



TABLE 6. TIME (IN SECONDS), LOSS, AND ACCURACY FOR THE
ORIGINAL DATASET WITH THE INCREASED LEARNING RATE (STRONG

SCALING) ON THETA.

Horovod communication overhead.

5.2. Flat Mode

Table 6 shows the performance for the original dataset
with epochs = 400 with the increased learning rate using the
flat mode on Theta. The results also indicate that, compared
with Table 4, properly increasing the learning rate results in
better accuracy, and the model training requires a sufficient
number of epochs (8) to achieve the high accuracy. When
we compare this with Table 4 using the cache mode, we
see that the benchmark benefits more from using the cache
mode than the flat mode. Notice that the time per epoch also
increases with increasing the number of nodes because of
the increased Horovod overhead.

Figure 9 shows power behavior similar to that in Fig-
ure 6. For the benchmark, using the cache mode results in
smaller runtime and lower power consumption for the node
and CPU. Compared with Figure 5, the Horovod overhead
enlarges the gaps between two consecutive training batch
steps because of the allreduce operations as discussed in
the preceding section, and similarly the power consumption
is smaller than that in Figure 5.

6. Conclusions

In this paper, we used Horovod to parallelize the Python
NT3 benchmark from the exploratory research project CAN-
DLE. We then analyzed the performance, power, and scala-
bility of the Horovod implementation with weak scaling and
strong scaling on the Cray XC40 Theta with different batch
sizes and learning rates under two memory modes: cache
and flat on Theta. Our experimental results indicate that
power profiling for the node, CPU, and memory is useful
for showing how the Horovod NT3 benchmark behaves
on the underlying system. The communication timeline of
this benchmark showed that the Horovod communication
overhead for the benchmark increased significantly with the
number of nodes although Horovod has the ability to scale
up. The benchmark under the cache mode resulted in smaller
runtime and lower power consumption for the node and CPU
as compared with results under the flat mode. Increasing the
batch size led to a runtime decrease and slightly impacted
the power; and increasing the learning rate resulted in a
slight decrease in runtime and node power and an increase

in accuracy, and the model training in NT3 requires the
proper number of epochs to achieve the high accuracy.

We plan to address several issues raised by the NT3
results. First, the data-loading time becomes the bottleneck
after speeding the model-training process. We have to con-
sider how to speed the input dataset operations, perhaps by
partitioning them. Second, we plan to perform additional
measurements with sharded and shuffled data in Horovod;
these will improve the loss and accuracy resulting from our
training runs, however, they do not affect the systems-related
results presented here. Third, the performance profiling us-
ing the Python cProfile includes only the total time for the
whole TensorFlow run, as shown in Tables 2 and 3. It does
not give any details about how TensorFlow behaves. To
further improve the performance of the TensorFlow run, we
may need a fine-grained performance profiling tool such as
NVProf [17] to profile the TensorFlow run. Further, we de-
veloped the Horovod version of the NT3 benchmark to sup-
port both CPUs and GPUs. We plan to test the benchmark
on heterogeneous systems with CPUs and GPUs, such as
Summit [21]. We also plan to add checkpoint/restart features
to the Horovod benchmark for fault tolerance. Lastly, we
plan to use our performance and power modeling work [26]
to model and optimize the CANDLE benchmarks. Python
codes, like other scripting languages, do not have compiler
optimization support and instead rely on the library, re-
source, and environment settings for improve performance.
We can utilize our previous work to identify better resource
and environment settings for performance improvement.

Because the NT3 benchmark, like other CANDLE
benchmarks, is implemented in Python by using the Keras
framework, the parallelization method using Horovod in this
paper can be applied to other TensorFlow-based CANDLE
benchmarks such as the Pilot1 and Pilot3 benchmarks in
a similar way. We plan to utilize OpenMP parallelism to
further develop hybrid Horovod/OpenMP/GPU versions of
CANDLE benchmarks.
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