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Abstract—Exascale computing brings with it diverse machine
architectures and programming approaches which challenge
application developers. Applications need to perform well on a
wide range of architectures while simultaneously minimizing de-
velopment and maintenance overheads. In order to alleviate these
costs, developers have begun leveraging portability frameworks
to maximize both the code shared between platforms and the
performance of the application. We explore the effectiveness of
several such frameworks through applying them to small pro-
duction codes. Throughout the process, we apply a logging tool to
gather data on the development process. We use this information
to develop metrics of application development productivity, which
can be used to holistically assess how productively a performance-
portable application was developed.

Index Terms—productivity, developer metrics, performance,
portability, HPC, VPIC, Kokkos

I. INTRODUCTION

Computing is intrinsically based on resource constraints; the
same holds for the scientific fields that build upon compu-
tation. In the past, performance on a single system was the
primary metric used to measure how efficiently a scientific
application used available resources. However, as the range
of hardware found in modern supercomputers increases, so
too does the importance of having application code that can
effectively make use of different underlying compute hard-
ware. Hardware is not the only resource of concern, however:
the process of porting applications to new platforms can be
incredibly expensive in terms of both time and effort, not
just in initial costs to produce functional code, but also in
terms of maintenance costs that are required over time in
support of the code. If not done well, ports can vastly reduce
developer productivity by forcing them to maintain several
divergent versions of an application, as shown in Fig. 1(a).
Thus, to truly capture the efficiency of an application, we
need a holistic metric that captures not only the performance
of an application, but also its portability across different
platforms and how productive developers are as they work
on the underlying code for the application.

(a) (b)

Fig. 1: Portability frameworks reduce the number of platform-
specific codepaths.

Hardware Diversity Computing hardware has evolved in
many dimensions as hardware manufacturers have sought
to improve computing efficiency as well as peak levels of
performance and address increasingly diverse needs. This has
had dramatic effects on software ecosystems.

Large-scale systems consisting of “traditional” CPUs are
still popular, but so too are systems that combine CPUs with
accelerators [1]. These accelerators are frequently throughput-
oriented GPUs, and there is growing interest in custom
silicon—such as that found in the Sunway TaihuLight—and
in FPGAs. The CPUs themselves are variegated from earlier
iterations, with dramatic increases in compute density in the
form of vector units, superscalar execution, and many cores
on a single die.

While porting and performance optimization has always
been a formidable undertaking, the myriad of hardware options
present a bigger challenge than ever before. In addition to the
question of what implementation achieves the best efficiency
for a given piece of hardware, it has become increasingly
difficult to reconcile these manifold codes.

System purchasers, in light of these trends, are keenly aware
of the possibility of “vendor lock-in”; that all of their codes
will be deeply adapted to a narrow set of hardware and unable
to effectively utilize new platforms save at great expense.

Programming Models These concerns have led to demand
for programming models and frameworks that allow for a
single-source solution to be run on multiple hardware back-



ends, as in Fig. 1(b). Examples of these efforts include:
OpenMP* (4.5) [2], OpenACC* [3], OpenCL* [4], HIP [5],
Kokkos [6], RAJA [7], and FleCSI [8]. While the claims of
these individual efforts differ, the overall themes are the same:
the desire to achieve both performance and portability with a
single code base, and to do so productively.

Contributions In this work, we introduce a candidate
methodology for tracking the combination of these “three Ps”
during application development. Specifically:

1) We discuss a number of metrics for assessing perfor-
mance, portability and developer productivity (PPP),
highlighting the significant amount of data required to
compute them.

2) We develop a candidate methodology and associated
tools for tracking application performance and portabil-
ity alongside developer productivity.

3) We evaluate our methodology by applying it to the
development of performance-portable implementations
of production codes: VPIC, Truchas and SpectralBTE.

II. RELATED WORK

The DARPA High Productivity Computer Systems pro-
gram [9] addressed many aspects of high performance com-
puting (HPC), including programmer productivity. While it
introduced important concerns specific to the HPC community,
at the time it dealt with ports to the Cell processor and was
only beginning to consider GPUs as general-purpose com-
putation devices. Many of the languages and tools available
today did not exist or were in their infancy. Kepner [10]
compared productivity for MPI, OpenMP, HPF and Java*
implementations of the NAS parallel benchmarks and found
that MPI required 70% more lines than the serial baseline
while HPF and OpenMP only required 10% more. In other
representative works at the time, Funk et al. [11], [12] present
a relative productivity metric targeted specifically at parallel
code development.

Today, these concerns have shifted to code-bases that may
be created and maintained with performance portability across
diverse architectures; this was the focus of the DOE Centers
of Excellence Performance Meeting in 2016 [13].

In the area of performance portability, a number of previous
efforts have evaluated different programming languages for the
development of performance-portable applications [14], [15],
[16]. Studies such as these often draw positive conclusions
about the ability to achieve portability across different hard-
ware designs, but lack a formal methodology for evaluating
their success. While no definition for performance portability
has yet been widely accepted, our previous work [17] at-
tempted to develop a shared lexicon in order to foster effective
discussion on the topic. This paper builds upon this previous
work, examining how the concept of performance portability
relates to productivity.

Wienke et al. have published several studies [18] of pro-
ductivity in HPC, examining both the relationship between
developer effort and performance and the relationship between

a system’s total cost of ownership and the number of applica-
tions it will run in its lifetime [19]. The EffortLog [20] tool
produced as part of their work collects performance and effort
information from application developers at regular intervals,
similarly to the tool presented here: the key differences are
our focus on applications targeting multiple architectures, and
tighter integration of effort logging into developer workflows
(via git hooks).

The ninja gap discussed by Satish el al. [21] embod-
ies the different levels of performance achieved by tradi-
tional languages that predate widespread parallel hardware
as compared to code written in languages augmented by
libraries/frameworks that take advantage of parallelism. Per-
formance results are compared against a baseline peak per-
formance achievable by an expert (“ninja”). Productivity is
qualitatively presented with example code as opposed to
quantitative metrics such as source lines of code (SLOC).

The breadth of ways to even count lines of code in a
meaningful way has been the subject of research; Nguyen et
al. [22] present a standardized method for counting lines of
code, giving examples for Perl, Javascript, and SQL. They
offer justifications for each choice and introduce precedence
rules for determining how constructs with multi-line physical
representations may be mapped to “logical” lines of code.

III. BACKGROUND

A. Programming for Performance, Portability & Productivity

Development teams looking to write performance-portable
codes find themselves with several options, each a trade-off
between performance, portability and productivity. Intuitively,
codes written to a high-level abstraction are likely to be easier
to develop and to move between platforms, but may achieve
a lower level of absolute performance than an implementation
highly optimized for a single platform. Conversely, codes
written to a low-level abstraction (or to directly target a
specific machine) may be able to achieve a very high level
of absolute performance, but at the cost of portability and
developer productivity.

Striking the right balance between the ‘three Ps’ depends on
the development team’s goals and the end-use of the code –
for example, a standalone application intended to be run only
a few times on a fixed dataset has very different requirements
than an (optimized) library intended to be integrated into
multiple scientific codes. Other influencing factors include the
code’s size/complexity and the development team’s familiarity
with different programming languages.

Novel codes unburdened by expectant users and an existing
code base may choose to develop (or prototype) the new code
at a high level of abstraction, facilitating the rapid explo-
ration of different algorithms and providing portability across
different hardware platforms from the outset. In some do-
mains, domain-specific languages (or DSLs, e.g. Halide [23],
OP2 [24], Devito [25]) provide a natural way for scientists to
express applications without consideration of the underlying
hardware; in other domains, it is possible to program to ab-
stract representations of parallel machines using a framework

2



Programming Model C C++ Fortran
OpenMP X X X
OpenACC X X X
OpenCL X X
Kokkos X
RAJA X
SYCL X

TABLE I: Programming model and language compatibility.

(e.g. Kokkos [6], RAJA [7], FleCSI [8], SYCL [26], HIP [5])
or a modern parallel language (e.g. OpenCL [4], C++17).

Complete rewrites of code in a new language or framework
may not be desirable or realistic for developers looking to port
large existing codes with many users, and incremental porting
of legacy codes may be complicated by language compatibility
issues (e.g. between Fortran and C++-based frameworks, see
Table I). Such developers are more likely to adopt a directive-
based solution (e.g. OpenMP [2], OpenACC [3]) that can
be more easily integrated into the existing code base. To
initiate a discussion on these topics, we begin by defining the
terminology and metrics needed to objectively measure the
development of a scientific application in the exascale era.

B. Performance Portability

We take our definition of performance portability (PP) from
Pennycook, et al. [17] as “A measurement of an application’s
performance efficiency for a given problem that can be exe-
cuted correctly on all platforms in a given set.”, along with
the metric to quantify PP using the harmonic mean as shown
in Equation (1).

PP(a, p,H) =


|H|∑

i∈H
1

ei(a, p)

,
if i is supported
∀i ∈ H

0, otherwise

0 (1)

This equation states that on a given set of platforms, H ,
the Performance Portability, PP(a, p,H), of an application a
running a problem p is the harmonic mean of the performance
efficiencies ei(a, p) on each platform i. PP(a, p,H) is 0, if any
platform in H is unsupported by a running p.

A common criticism of this definition is that it does not
penalize “heroic” development efforts for individual platforms:
it is possible (and perhaps necessary) to maintain completely
separate highly-optimized code paths for each platform in
order to maximize PP. Although the definition is useful for
assessing an application, it does not address the desire to
reason about which of the myriad approaches to developing
performance portable code is most effective. For this, we
need to have some ways of measuring the effort expended
in achieving performance across different architectures.

C. Productivity and Effectiveness

The definition of productivity used by Wienke [27] is:

productivity =
output
input

This ratio is intuitive, and allows for a single definition/metric
to be used to measure productivity in different contexts:
an individual’s productivity may be measured as the ratio
of application performance to development effort; while an
HPC site’s productivity may be measured as the ratio of
scientific output to monetary cost. A more specific measure of
productivity is relative development time productivity (RDTP),
introduced by Funk et al. [12] for parallel code development
and shown in Equation (2).

Ψrelative =
speedup

relative effort
(2)

Calculating productivity at a fixed point in time this way
is useful, but using it to compare different development
approaches may be misleading. The relationship between input
and output is unlikely to be a linear function, so projections
(e.g. the level of performance reached for a fixed effort) given
a productivity score are likely to be inaccurate.

D. Developer Effort

The measurement of effort can be broken into two different
approaches: direct methods based on effort logging; and in-
direct methods that approximate effort from other quantities
(e.g. lines of code or number of code changes).

The direct methods require substantial involvement from
developers and often a subjective input from them. They
require either a daily “diary” entry as in EffortLog [20] or
detailed input for each commit.

The indirect methods measure input effort through the num-
ber of added SLOC. For example, Wheeler’s SLOCCount [28]
converts the objective measure of SLOC from an abstract
number into more useful values such as man-months and
dollars using the Constructive Cost Model (COCOMO) [29]
or even a custom estimation formula.

Function points have also emerged as an alternative measure
to SLOC [30], but have not seen much use in scientific codes.
Simply, it is difficult to break up the core of a scientific
application into small functional operations. This approach
may still have some value for higher-level functionality of a
code (e.g. operations related to input/output).

Often, just SLOC or function points do not adequately
describe the process of developing a highly-parallel code. A
more detailed view can be obtained by looking at the lines
added and removed through the use of diff utilities. These
utilities first appeared in the mid-1970s and were formalized
by Hunt and MacIlroy [31]. Many variants have since emerged
and have become intertwined with code revision systems.

IV. MEASURING PERFORMANCE, PORTABILITY AND
PRODUCTIVITY

Developing PPP codes rests on a paradox: the application must
be specific enough to take advantage of the peculiarities of
each system it runs on while being broad enough to do so on
all of them, and it must accomplish this in a way that does
not significantly reduce developer productivity.

One potential solution is to implement separate code paths
for critical functions on all platforms. However, this increases
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maintenance overhead with every platform added, as develop-
ers are forced to fix every bug and implement every feature
separately for each platform. An alternative solution is to
integrate optimizations for a new platform into an existing
“single-source” code base. This decreases maintenance costs
long-term, but having to maintain compatibility with the
myriad other platforms already supported may make initial
porting and optimization more difficult and time consuming.

It is difficult to say which of these (or other) approaches
delivers the highest performance portability for the lowest
total effort. In the remainder of this section, we detail a
number of metrics that we believe may provide insight into
this relationship.

A. Platform Divergence and Maintenance Cost

Before an application can be optimized for a particular plat-
form, it must first be capable of producing valid answers
to relevant problems on that platform. This porting process
can take several forms: rewriting the application in a differ-
ent language or framework that supports the platform (e.g.
CUDA* for NVIDIA* GPUs); adding support for the new
platform to some underlying framework (e.g. Kokkos); or
simply debugging the application, such as when the language
in use already supports the new platform but the application
has not yet been tested.

Whatever the approach, a port requires modifying an ex-
isting application that solves a given problem, p, on a given
platform, h, so that it solves p on a new platform, h′. Thus
a port requires applying a transformation, defined in terms of
both the tool(s) used in the port and the techniques which
define their use, t, to the code base: t : Ap,h −→ Ap,h′ , where
Ap,h and Ap,h′ are the set of applications that solve p on
platform h and h′, respectively.

In order to compare applications, it is useful to have a notion
of distance between them: d : Ap × Ap −→ R≥0, where Ap

is the set of all applications which solve p. In particular, d
should define a metric on Ap, i.e. it should be symmetric,
should come out to zero for identical applications, and satisfy
the triangle inequality.

For a given set of applications, A ⊂ Ap, we can extend d
to give a measure of how different they are from each other.
We call this measure of code divergence D:

D(A) =

(
|A|
2

)−1 ∑
{ai,aj}⊂A

d(ai, aj) (3)

Thus D(A) is the average of the pairwise distances between all
of the applications in A. The set of current ports is used for the
divergence because we are looking at the cost of maintaining
these different ports. On the other hand, the distance from the
original application, whether serial or parallel, is important to
understand the cost of porting an application.

As an example, we use the change in the number of source
lines of code, normalized to the size of the smaller application:

d(at1,h1
, at2,h2

) =
|SLOC(at1,h1)− SLOC(at2,h2)|

min(SLOC(at1,h1),SLOC(at2,h2))
(4)

Minimizing the distance between the code paths for each sup-
ported platform reflects the typical motivation behind “single
source” programming frameworks like Kokkos.

B. Development Cost

Another common area of interest is the cost associated with
porting an application to a target platform, expressed as:

cd,t(a, at,h) = αd,t(d(a, at,h)) (5)

where αd,t represents a transformation-dependent conversion
function that converts distance into cost.

We extend this idea to describe the cost of porting an
application to a set of platforms, H:

Cd,t(a,AH) = αd,t

(
1

|AH |
∑

ah∈AH

d(a, ah)

)
+ βd,t (D(AH), |AH |) (6)

where AH is the set of ports to the platforms in H , αd,t is
the same as in Equation (5), and βd,t, like αd,t, is a function
which relates distance to cost, although βd,t is also impacted
by the number of ports (i.e. the cardinality of AH , as seen
above). This encapsulates the idea that the cost of the port
depends not just on how far the ported versions are from the
original version, but how far they are from each other. It should
be noted that βd,t is not necessarily monotonically increasing.
In fact, for many transformations there is expected to be a
significant cost to minimizing the code divergence, especially
for large sets of platforms. We anticipate transformations
which use PP frameworks well to have an associated βd,t
which allows low divergence ports to be much less expensive.
The initial cost is typically the amount of developer time
required to complete the port. Much like distance, this is often
thought of in terms of lines of code, especially when the intent
is to predict the cost of a project. One software cost estimation
method is that used by the COCOMO II project:

effort [person-months] = A ·M · (SIZE)F (7)

where M =
∏h

i=1EM (each EM is an effort multiplier),
F = B+0.01 ·Σ5

j=1SFj (each SF is a scale factor), SIZE is in
thousands of lines of code, and A,B are calibration constants
[18].

The constants for common programming languages have
been gathered from studies of developer effort on various
projects, but constants for parallel programming languages and
code transformations are not established. This is one area in
which we hope development logging can make a contribution.

C. Application Performance

The final consideration that developers are usually concerned
with is application performance. This is best understood in
terms of how well the version of the application uses the
available hardware to solve a problem; recalling Equation
(1), PP provides a means of combining these performance
efficiencies into a single value.
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Productively carrying out performance portable ports of an
application to a set of platforms H amounts to maximizing
Equation (1) while minimizing Equations (3) and (6). That is,
in porting an application, we need to find which techniques
allow us to minimize both the total cost of porting the
application and the divergence of the ported versions, while
maximizing performance portability.

D. Churn

In highly-parallel computing application development, it is
common that changes result in very small increases in lines of
code, but lots of addition and removals of lines to accomplish
the result. We define a measure called churn to quantify this:

churn =
# lines add/del.

l
, l =

{
1, ∆SLOC = 0

∆SLOC, ∆SLOC 6= 0
(8)

It should be noted that the sign of churn is only positive when
∆SLOC = 0 by convention.

There could be many variants of churn that try to account
for actual “lines edited” or to avoid counting white space or
changes to comments. In tracking churn, we hope to capture
the refactoring process as well as simply moving directives
around or optimizing MPI communication. We also want to
differentiate between development approaches that are verbose
but productive and those that are compact but difficult to use.

V. DATA COLLECTION METHODOLOGY

One goal of this project was to allow software developers the
ability to capture and store data related to productivity and
performance in a way that satisfied the following requirements:

1) Easily parseable.
2) Separable from the actual software source code.
3) Traversable in relation to software development process.

These requirements allow an analysis system to extract in-
formation over arbitrary development windows that can de-
fine small feature developments, or larger project milestones.
Additionally, it allows productivity and performance logs to
be shared separately from the actual source code (assuming
access controls are different for each of them). Finally, we
can put together tools to aggregate the information into pro-
ductivity statistics.

We also had two overarching concerns regarding the data
collection itself:

1) How to keep the data as objective as possible; and
2) How to keep the process as painless as possible.

Prior efforts to collect productivity data have been plagued
by subjectivity; the notion itself is so nebulous as it is hard
to capture in the first place, let alone capture in a consistent,
reproducible, and credible manner. Above all else, this is due
to the necessity of accounting for the human factor in the data.
Ideally, we would minimize that factor as much as possible.
Additionally, keeping the process as painless as possible helps
to improve the quality of data by reducing user frustration; the
fewer questions they have to answer, the less frustrated they

will be; while the more frustrated respondents get, the lower
the quality of their answers.

A. Automation

There is a lot of relevant data that can collected automatically
during development: files modified, lines changed, branch
name, time stamps between commits, and more. Collecting
such data automatically will likely be far more consistent
(and objective) than anything a user could provide; they might
forget a file that they edited, misspell a branch name, or
underestimate development time.

B. Developer Surveys

Free-form responses to developer surveys pose inherent prob-
lems. First, it makes the data hard to analyze, likely requiring
some form of postprocessing by either humans or sophisticated
natural language interpretation tools. Second, it makes the
data highly subjective and unlikely to be comparable between
different respondents. To help avoid these issues, our tools
present several clear-cut questions with a clearly-delimited set
of answers. This ensures that the same areas of interest will
be covered in every record, while also making the answers
simple enough to be analyzed easily.

Of course, different types of answers are appropriate for
different questions. For questions where the desired informa-
tion is described well by a spectrum between two extremes, we
use a 7 point scale as set by NASA’s precedent [32]. For other
types of questions, we restrict answers to a simple ‘yes’/‘no’,
or to a single value (e.g. a length of time) requested in specific
units in order to keep answers unambiguous.

There are two methods to impose such specific restrictions
on the form and content of responses. One is validating
the entire log entry after all the responses are completed,
and rejecting any entries that do not fit the desired format.
Unfortunately, this is cumbersome at best and likely to irritate
users. The other option is to validate on a per-question basis,
immediately after respondents submit each answer. This has
the benefit of offering real-time feedback, making it easier to
correct answers, avoid future mistakes, and overall make the
process less frustrating. However, the ease of use provided
by immediate validation comes at the cost of maintaining an
interactive system to provide that feedback. Relative to the
danger of corrupted or incomplete data, though, this cost is
easily managed.

C. Work-flow Integration

In order to minimize the burden on respondents, we chose to
embed our interactive logging tool into a developer’s normal
workflow as seamlessly as possible. Since we sought to record
data about the development process, this meant that we wanted
to tie our tools to commits in the revision control system.
Ideally, the developer wouldn’t even need to remember to
use our tools; they would be automatically triggered whenever
someone commits work on a project that uses our tools.

When entering productivity information, the first prompt
asks the user whether or not they want to answer questions for

5



the effort log for the commit. This serves two main purposes.
First, not all commits represent a milestone that a developer
would like to capture productivity information for. While we
could prescribe which commits require human input ourselves,
the developers are in a far better position to evaluate the
importance of any given commit, and so we leave the choice
to them. Second, by asking the user if they want to answer
questions for a commit, we avoid the irritation of forcing them
to answer questions they feel are unnecessary. This choice to
have our users consciously volunteer their time to aid in our
logging is intended to make it seem minimally invasive, and
has no bearing on data that are collected automatically.

Once the collection process is complete, a log file is
generated in a parseable format, and connected to each commit
using git-notes. This allows the productivity log to track to
the git history but remain unobtrusive to the developer. Addi-
tionally, this provides a mechanism to easily share logs across
multiple machines, update logs as new information is collected
(e.g. performance tests on a new platform are executed),
extract information separately from the actual source code,
and interact with the collected data using existing git tools.

D. Productivity

mental demand

physical demand (omitted)

temporal demand

overall performance

effort

frustration

NASA TLX perceived workload

Fig. 2: The perceived workload
from the NASA TLX survey

There are two different
ways that we collect pro-
ductivity data: some auto-
matically and others based
on survey answers provided
by developers. The auto-
matic collection is focused
on the files changed – in-
cluding both files added to
the git tree and those not
added – and captures the
name, size and last modified attributes of each file. This data
can give us insight into the total workload of a commit,
regardless of whether the work is represented in the git tree.

The other data are generated from survey responses during
the git commit hook. The survey responses capture: the type(s)
of activity performed (planning, coding, refactoring, debug-
ging or optimizing); the hours spent on each type of activity;
what programming language(s) or framework(s) were used;
and a self-reported difficulty metric. The difficulty metric is
derived from a modified NASA TLX [32] survey which gauges
the perceived workload for each commit; the components of
the perceived workload are shown in Fig. 2.

E. Performance

Whether performance data is generated online (e.g. as part of
a test carried out before making a commit) or offline (e.g.
as part of an automated nightly build system), it is always
associated with a particular commit. Combining collected
performance data with collected productivity data enables us
to track derived metrics such as performance as a function of
the hours of development time, or performance as a function
of change in the number of lines of code.

VI. CASE STUDIES

During the yearly Parallel Computing Research Summer In-
ternship at Los Alamos National Laboratory [33] teams of
students work to optimize and parallelize real scientific codes.
During this year’s internship three teams volunteered to report
their performance, portability and productivity metrics. Each
team took a different approach to a different problem and
together they give an outline of what can be shown by looking
at these metrics. It is important to note the outcomes of each
case study should not be generalized, but the tools and methods
used are widely applicable.

The reader is reminded that the focus of this paper is on
effort and productivity; the codes detailed here are each at
an early stage of development, and each student team was
focused on evaluating different languages and platforms. The
performance numbers in this section are often not reflective
of the peak performance achievable on any one platform, but
this strengthens our argument for tracking PPP data throughout
development and reacting accordingly.

A. Case: VPIC

VPIC is a particle-in-cell (PIC) plasma physics model that has
traditionally used hand-tuned intrinsics to achieve high levels
of performance. The code tracks particles and electric and
magnetic fields through a structured grid according to basic
principles. VPIC is also relatively small for a production code,
with only around 40,000 - 60,0000 lines. The application runs
at large scales and on many CPU platforms, operating with
upwards of 2 million MPI ranks and 7 trillion particles [34],
as well as leveraging threads. Despite this, VPIC currently
lacks a method to offload work to GPUs.

Together, these characteristics make it a perfect candidate
to port to a PP framework. The current scalability and the
range of systems that VPIC can run on provide a good
baseline for comparison; if a VPIC port can compare to the
mainline version, we will know that the overhead involved
in the framework is not a real obstruction to getting good
performance out of a code. The small size of VPIC makes
a port much more feasible, reducing the required time from
years to months, while still offering interesting comparisons
to other production codes. The lack of GPU support is a clear
motivation to explore portability frameworks, and to explore
possible trade-offs between portability and performance on
individual platforms.

For the portability framework we chose to use Kokkos [6],
a C++ library developed at Sandia National Labs that can
compile down to a variety of backends. We use Kokkos’
OpenMP and CUDA backends, allowing it to switch between
CPU and GPU builds at compile time. Kokkos is amongst
the most mature of the PP frameworks, and offers advanced
features such as scatter-add views and automatic device-aware
particle sorting.

For the case study, the performance portability and the effort
(productivity) of porting VPIC into Kokkos was measured.
Two kernels are converted, advance_p and advance_b
(which handles the magnetic field updates), these are analyzed
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TABLE II: Application efficiency of the advance_b and
advance_p Kernels in VPIC

advance_b advance_p

Platform 1 Original Kokkos Original Kokkos

Intel® Xeon®

8176 Processor 100% 13% 100% 62%

IBM* Power 9 100% 32% 100% 46%

Cavium* ThunderX2 100% 54% 100% 50%

NVIDIA* V100 0% 100% 0% 100%

TABLE III: Architectural efficiency of the advance_b and
advance_p Kernels in VPIC

advance_b advance_p

Platform 1 Original Kokkos Original Kokkos

Intel® Xeon®

8176 Processor 12% 2% 18% 11%

IBM* Power 9 14% 5% 8% 4%

Cavium* ThunderX2 11% 6% 10% 5%

NVIDIA* V100 0% 93% 0% 5%
1 Hardware and software configurations available in Appendix A

in Table II. Further, we note that as part of this effort we
developed an initial port of 5 of the 11 core kernels, while
eliminating the need for a direct implementation for 3 kernels
which are related to handling replicated data – a direct CPU
optimization with Kokkos has the functionality to replicate.
Performance analysis of these kernels is omitted for brevity,
and will be covered in a future study.

It is important to note that the code used on each platform
is the portable code variant and has not received hand opti-
mization for the given platform. We expect that with tuning
the performance on a given platform could be significantly
increased, particularly in the case of vectorization. This per-
formance tuning will be addressed directly in future work.

As seen in Table II, VPIC was originally portable on 3 of the
4 target platforms. When application efficencies are compared
across code bases on the original set of platforms using the
harmonic mean, PP is 100% which tells us that the original
code base is more optimized for CPU than the Kokkos version.
However, when the NVIDIA V100 platform is introduced the
PP of all the platforms in the original code base goes to 0. The
PP for the Kokkos port of the advance_b and advance_p

kernels are 29% and 59% respectively.
For the calculation of architectural efficiency in Table III we

compare to number of bytes moved to the maximum achiev-
able memory bandwidth. This is only entirely representative
of kernels which are entirely memory bound, but serves as a
good first order approximation of our expected performance
bound. The efficiencies in Table III show that the PP on the
CPU platforms solely (advance_p: 10%) is higher on the
original code base than the Kokkos port (advance_p: 5%),
but as before we see that once you add the the GPU platform

Fig. 3: Thread Scaling of VPIC1

Fig. 4: Difficulty Per Task for VPIC Team

the PP of the original code base is 0. For the Kokkos version
of advance b and advance p the PP is 4% and 5%.

It is interesting to note that the Kokkos version increases
performance-portability while maintaining a low-divergence
single-source solution which could also offer support for
future architectures. The Kokkos port of VPIC has a two
line difference between the GPU and CPU versions, from a
total line count of 18198. When using the distance metric in
Equation (4) the divergence of these two code paths is 0.01%,
with the expected maintenance cost being very close to the
cost of a single code path.

During the port of VPIC to Kokkos, we tracked development
progress with productivity monitoring tools. As seen in Fig. 4,
Planning and Debugging were found to be some of the hardest
tasks, with Coding and Refactoring being some of the easiest.
The rate of code change over time with specific milestones
can be seen in Fig. 5. We can see the rate of change holding
steady before the completion of advance_b and a slowly
increasing rate until a few smaller kernels were converted
and a well-understood pattern is completed. The rate is then
fairly constant again until right before the completion of
advance_p, the most complex kernel completed.

Fig. 5: Completion of advance_b and advance_p over
time
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B. Case: Truchas

As a second case study, we optimized two computational
kernels from the open source Truchas code [35]. Truchas is
a 3D multi-physics simulation tool developed by Los Alamos
National Laboratory for metal casting and other applications,
and includes physics models for heat transfer, phase change,
incompressible free-surface fluid flow, and several others. It
uses unstructured meshes for modeling complex geometries
and uses finite volume, finite element, and mimetic finite
difference spatial discretizations. Truchas is also written in
modern Fortran, making heavy use of object-oriented language
features introduced in the Fortran 2003 standard.

The performance portability study looked at porting key
computational kernels to OpenMP CPU, OpenMP GPU of-
fload, and CUDA. The kernel shown here is the mimetic finite
difference kernel, essentially a stencil operation on an un-
structured mesh that preserves important geometric properties.
OpenMP on CPU is a directive-based API for multi-threaded
parallel processing on shared-memory multi-processor (core)
computers. OpenMP for the GPU is a set of new directives
available in OpenMP 4.0+ enabling execution on offload
devices such as GPUs. CUDA (Compute Unified Device
Architecture) is a GPU-specific parallel API that runs on
NVIDIA hardware.Table IV compares the net line changes and

TABLE IV: Effort Summary of Mimetic Finite Difference
kernel

Approaches Time to Adopt
(in Hours)

Net Line
Changes

Cumulative
Frustration

OpenMP CPU 18 28 8

OpenMP GPU 21 151 10

CUDA GPU 41 284 12

implementation hours across the three approaches, and shows
that CUDA requires the largest number of line changes, incurs
the highest frustration level, and involved the most developer
hours for planning, implementing and debugging. Meanwhile,
OpenMP CPU requires fewer line changes, and relatively
little effort in terms of developer hours and frustration. The
divergence metric in Equation (3) for all three ports and the
combinations of two ports that cover all the architectures is
shown in Table VI. The distance between ports is determined
using a git diff between branches established for the port
and then divided by a line count in the source part of the
repository. Because there is a lot of mesh setup code, the

TABLE V: Distance matrix comparing three ports with differ-
ent languages against each other.

OpenMP
CPU

OpenMP
GPU

CUDA

OpenMP CPU 0 148 503

OpenMP GPU 148 0 357

CUDA 503 357 0

TABLE VI: Code divergence metric evaluated using different
maintenance options from Table V

Ports to maintain Divergence

OpenMP CPU & OpenMP GPU 2.02%

OpenMP CPU & CUDA 6.86%

OpenMP CPU, OpenMP GPU, & CUDA 4.58%

percentage expressed in the divergence metric is relatively
small. The results show that the divergence of an OpenMP
CPU and GPU approach is smaller and will likely have lower
maintenance costs, approaching the goal of a single-source
ideal for a Fortran code. This must be weighed against the
performance results of each port and whether the project goals
stress maintenance or performance.

For the same kernel, the performance portability metric
was calculated based on Architectural Efficiency, relative to
STREAM bandwidth from main memory, as shown in Ta-
ble VII. If we calculate the metric for the two subsets as in
Table VI, we get 6.94% and 5.85% respectively. The efficiency
of the OpenMP code is low on both the CPU and GPU
platforms, highlighting a need to optimize it further; future
work will explore improvements to the code’s non-contiguous
memory access pattern, which are expected to require fewer
changes (in terms of lines of code) than were needed by the
CUDA port.

TABLE VII: Performance portability based on architectural
efficiency for the Mimetic Finite Difference Kernel

Platform1 Version Arch.
Eff.

Intel® Xeon® E5-2698 processor OpenMP CPU 4.19%

Intel® Xeon Phi™ 7250 processor OpenMP CPU 7.76%

Intel® Xeon® Platinum 8176 processor OpenMP CPU 5.49%

Power9 OpenMP CPU 3.44%

Volta + Power9 OpenMP GPU 5.41%

Volta + Power9 CUDA 77.71%

Volta + Intel® Xeon® E5-2683 processor CUDA 90.04%

Performance Portability 6.7%
1 Hardware and software configurations available in Appendix B

C. Case: Spectral BTE

In this case study, we focused on making the simulation of the
Boltzmann Transport Equation (BTE) faster and scalable. The
simulation of BTE is used to model molecules that are not
in equilibrium and has applications in hypersonic flows, fluid
micro-flows, plasma physics. This code uses a spectral method
to compute a large sum solving for the collision operator of
the BTE. This sum contains a constant weight term that scales
as O(N6), where N is the number of velocity grid points. A
large N is needed for higher accuracy but this can result in a
weight term that is gigabytes in size.
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The existing version of the code was parallelized using
MPI and OpenMP. In this implementation, grid points in
physical space are evenly distributed across MPI ranks. This
requires every individual MPI rank to hold its own copy of
the convolutional weights, limiting both the number of MPI
ranks that can be placed on a single node and the maximum
N that we can solve for to the amount of memory on a single
computing node. We attempted to remove this bottleneck by
first refactoring the existing code and then reconfiguring and
implementing two different workflows.

The refactoring step of this process involved the deletion
of dead code and turning repeated code into functions. This
resulted in many lines of code added (i.e. turning code into
functions) and removed (i.e. deleting dead code and removing
repeated code) and the decrease of SLOC. This is captured by
the churn of -3.47.

In one of the implementations, we restructured the code in
such a way that the MPI ranks work on solving portions of
collision operator for every spatial grid point instead of solving
for it entirely for only a couple of spatial grid points. This
allows MPI ranks to hold only a fraction of the convolutional
weights. Because of these changes, much of the MPI commu-
nication and related code in the original implementation was
removed. Additionally, temporary code was added to support
the new workflow as well as debugging. This code was later
deleted or reworked and moved to more relevant files. Overall,
the new implementation saw a slight increase in lines of code
over the refactored code but a large number of changes in
terms of addition, deletion, and movement of code, resulting
in the computed churn of 25.60.

The other implementation involved forgoing the precompu-
tation of the convolutional weights and instead recomputing
the weights at each time step on the GPU using CUDA. This
implementation gets rid of the problem of weights storage.
The computation of the convolutional weights are series of big
sums that are well-suited for porting to GPU, but a problem
of code replication arises because the GPU cannot access host
(CPU) memory or instructional code and vice versa. Thus,
porting the desired code over to CUDA initially required
copying and pasting large chunks of code with small changes
to make them suitable for CUDA, which resulted in a large net
gain in line numbers with little effort. However, later changes
to the code were made more difficult as the result of this code
duplication, since the same changes needed to be replicated
across both CPU and GPU versions of the code. As such,
the GPU implementation saw a large increase in the lines
of code in comparison to the refactored code, but the actual
changes in terms of code modification were small, resulting
in the computed churn of 6.09.

The churn scores are very different for MPI implementa-
tion versus CUDA implementation because while the MPI
implementation required a complete change in code workflow
(e.g. distributing the convolutional weights rather than the
physical space across the nodes) but had a small net change
in the line numbers, the CUDA implementation only required
small changes regarding the actual code to ensure the code

instruction can be executed in GPU but had a large net change
in the line numbers due to code duplication in writing for a
GPU version.

VII. DISCUSSION

We evaluated the performance portability metric for kernels
from two real application codes, using both application ef-
ficiency and architectural efficiency. For VPIC, application
efficiency gives a comparative view of the Kokkos port relative
to other implementations and shows its performance is gener-
ally poorer. For Truchas, architectural efficiency identifies an
imbalance in the performance achieved on different platforms:
the CPU performs worse than the GPU and also worse than
expected, suggesting that the OpenMP code is in need of
further optimization. Both efficiencies clearly identify focus
areas for future optimization efforts, highlighting the value of
using our tools to track PP during development.

The productivity measurement efforts gave mixed results.
The identification of churn as a potential measure of interest
is confirmed by the work on SpectralBTE, where net lines
of code decreased in some aspects of the development work:
in cases such as this, reporting final SLOC alone would be
misleading. The code divergence metric is similarly confirmed
by the work on VPIC, where it accurately represents progress
towards the ideal goal of a single-source code (i.e. a divergence
of nearly 1). However, the work on Truchas highlights poten-
tial difficulties in interpreting the metric; although divergence
of the code as a whole is arguably the most relevant metric
for any development team, calculating divergence with some
standardization of the basis may be necessary in order to com-
pare the result to other efforts or to evaluate a programming
approach in a small-scale study (e.g. a single kernel).

Our analysis of the coding approaches in each case study
is limited by a lack of data quantifying different aspects of
parallelization effort (e.g. hours required to port to OpenMP
or MPI). In most cases, there is simply no data and in others
there are very limited sample sizes that give a high uncertainty
and really no basis to extrapolate far from the original study.

VIII. CONCLUSIONS

It is apparent that even basic data on the processes for creating
parallel code from a serial code are difficult to find. When
the scope is expanded to consider multiple parallelization
approaches and the effort expended on each, the absence
of this data becomes more pronounced. Without such data,
we cannot hope to gain useful insight into the relationship
between performance, portability and productivity and how
they behave over time for different individuals, code bases
and programming languages.

Improving developer understanding of the three Ps is nec-
essary to develop scientific applications in the exascale era.
Recent advances in both hardware and software have given
developers many more options to consider when deciding what
direction their future code development should take, but their
resources have not increased accordingly. There is great danger
here: going down the wrong path risks creating a degree of
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Fig. 6: The cross-correlation matrix of logged data shows some of the comparisons that future studies could make.

technical debt from which it would be difficult to recover,
but not going forward at all guarantees that an application’s
capabilities fall behind. The babel of parallel languages and
the lack of portability may have profound consequences for the
scientific community and could cause a stagnation in progress
if performance portability and productivity are not addressed
properly. This is a problem that the whole community needs to
address: from hardware designers, vendor software developers
through to scientific programmers. Each plays a role in making
scientific applications more capable while best utilizing the
scarce resources available.

The methodology presented in this paper is an impor-
tant first step towards understanding and modeling the three
Ps. Our tools integrate directly into a developer’s existing
(git) workflow in order to facilitate the calculation of PP
and complementary productivity metrics (which differentiate
between initial development/porting effort and maintenance
effort) while minimizing the burden of data collection. We
acknowledge that the sample sizes in this work are too small,
and the case studies too limited in scope, to make any
broad definitive statements on the costs of adopting different
parallelization frameworks; however, our results nonetheless
demonstrate the value of individual development teams using
our tools to guide their optimization efforts.

A. Future Work
The work has just begun on trying to quantify software
development effort as well as the performance portability
of a highly-parallel scientific application. The methodology
proposed here enables developers to track their effort and
produces metrics that provide a starting point to objectively
evaluate parallelization efforts in a variety of ways. There is
still a need to deploy the tools and techniques to classroom
research, hackathons, and real development environments to
gather some fundamental parallel software development data.
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APPENDIX A
ARTIFACT DESCRIPTION APPENDIX:VPIC PERFORMANCE

EXPERIMENTS - TABLE II, TABLE III AND FIG. 3
A. Abstract

The methods used for the VPIC benchmarks are provided below. The
Kokkos version of the code is not released at the time of the writing of
this paper. However, the build environment, hardware platform and execution
methods of testing are provided.

B. Description
1) Check-list (artifact meta information):
• Program: VPIC
• Compilation: CUDA, Intel® C Compiler, GCC, ARMCLANG

and XL
• Data set: VPIC-provided harris input deck
• Run-time environment: Intel® MPI Library, OpenMPI
• Hardware: Intel® Xeon® Platinum 8176 processor, Power9,

ThunderX2, Volta
• Output: Per-kernel timings reported by VPIC
2) How software can be obtained: The current VPIC codebase

can be obtained at https://github.com/lanl/vpic. The Kokkos version of the
VPIC software has not yet been released publicly.

3) Hardware: For these experiments the datsets were run on a variety
of hardware detailed in Table VIII.

TABLE VIII: VPIC Performance: Hardware Specifications
Hardware
Platform

Processor
SKU

Cores per
socket

Sockets per
node

Memory per
node (GB)

Intel® Xeon® Platinum
8176 Processor

Platinum
8176 28 2 376

IBM*
Power 9 8335-GTG 20 2 285

Cavium*
ThunderX2 CN9980 32 2 255

NVIDIA*
Volta V100 SXM2 5120 1 16

4) Software: The ”original” version of VPIC used is available
as commit c188cca6ad692a3f03865362c6480f223d870692 on the
official VPIC github site: https://github.com/lanl/vpic/commit/
c188cca6ad692a3f03865362c6480f223d870692

Compiler and MPI version per platform:
• Intel® Xeon® Platinum 8176 Processor: Intel® C Compiler 19.0.0 /

Intel® MPI Library 19.0.0
• IBM Power 9: IBM XL 16.1.0 / OpenMPI 2.1.3
• Cavium ThunderX2: ARM HPC Compiler 18.4.0 / OpenMPI 2.1.3
• NVIDIA Volta: Cuda 9.2
5) Datasets: The “harris” data set from the sample folder in the official

VPIC distribution was used. The nx, ny and nz were changed to 128, 128 and
128 respectively. The last change was to turn off check-pointing.

C. Installation
Starting from the standard VPIC CmakeLists.txt the following was

changed for each platform. On all installations, both Kokkos and Original,
-DCMAKE BUILD TYPE=RELEASE was used while configuring. The pri-
mary function of this flag is to add the -O3 flag and remove debug code from
the code path.

On the Kokkos builds ENABLE KOKKOS AGGRESSIVE
VECTORIZATION was used as well as ENABLE KOKKOS OPENMP

on the CPU builds and ENABLE KOKKOS CUDA on the GPU build.
Additionally, for each platform KOKKOS ARCH was set appropriately.

D. Experiment workflow
For each data point in Table II and Fig. 3 the specified build and data-set

was run 5 times. From that data the lowest timing is shown.
Each experiment was run with one MPI process per socket, with each MPI

process pinned to one of the available sockets. One thread per core on a spe-
cific socket was used (no HyperThreading or hardware threads). The Kokkos
version used OpenMP exclusively while the original version used PThreads.
OpenMP settings OMP PLACES=threads and OMP PROC BIND=spread
were used. All experiments were done using a single node.

The thread scaling experiment used the Intel® Xeon® Platinum 8176
processor platform listed in Table VIII. During the experiment data points
from Fig. 3 the 1,2,4,8 and 16 thread experiments were executed on a single
socket without MPI. The 32 and 56 thread data points use two MPI processes
as described above with an equal number of threads on each socket.

APPENDIX B
ARTIFACT DESCRIPTION APPENDIX: TRUCHAS

PERFORMANCE EXPERIMENTS - TABLE VII
A. Abstract

The ports to OpenMP for the CPU, OpenMP for the GPU and to CUDA
with C kernels were the focus of this effort and for the performance studies.

B. Description
1) Check-list (artifact meta information):
• Program: Truchas
• Compilation: Nvidia CUDA compiler, Intel® Fortran Com-

piler, GNU Fortran compiler, and IBM XLF compiler
• Run-time environment: OpenMP environment variables set

to best performing for each platform
• Hardware: Intel® Xeon® E5-2698 processor, Intel® Xeon Phi™

7250 processor, Intel® Xeon® Platinum 8176 processor, Power9,
Volta

• Output: Kernel averaged timings reported by kernel driver
programs

2) How software can be obtained : The Truchas application is
available at the official Truchas GitLab repository (https://gitlab.com/truchas/
truchas-release).

The computational kernels were extracted from Truchas into a separate
Truchas Kernels repository, which is publicly available at the web address
https://gitlab.com/truchas/pcsri2018/truchas-kernels. Each of the three opti-
mization approaches was implemented in its own git branch, as described in
Table IX.

TABLE IX: Truchas Kernels Optimization Approaches

Optimization
Approach Git Branch Name

OpenMP CPU openmp_orig
OpenMP GPU openmp_orig_offload_one_memcpy
CUDA cuda_orig

3) Hardware: For this case study we run on a variety of hardware
detailed in Table X.

TABLE X: Truchas Performance: Hardware Specifications
Hardware
Platform

Processor
SKU

Cores per
socket

Sockets
per node

Threads
per node

Memory per
node (GB)

Intel® Xeon®

E5-2698 processor Xeon E5-2698 16 2 64 125

Intel® Xeon Phi™
7250 processor Xeon Phi 7250 68 1 272 94

Intel® Xeon® Platinum
8176 processor

Xeon Platnium
8176 28 2 112 376

IBM
Power 9 8335-GTG 20 2 160 285

NVIDIA
Volta V100 SXM2 5120 1 N/A 16

NVIDIA
TITAN V V100 PCIE 5120 1 N/A 12

4) Software: The compiler version used on each platform:
• Intel® Xeon® E5-2698 processor: Intel® Fortran Compiler 18.0.2 or

GNU Fortran 7.3.0
• Intel® Xeon® E5-2683 processor: Intel® Fortran Compiler 18.0.2 or

GNU Fortran 7.3.0
• Intel® Xeon Phi™ 7250 processor: Intel® Fortran Compiler 18.0.2 or

GNU Fortran 7.3.0
• Intel® Xeon® Platinum 8176 processor: Intel® Fortran Compiler

18.0.2 or GNU Fortran 7.3.0
• IBM Power 9: IBM XLF 16.1.0
• NVIDIA Volta: CUDA 9.2 or IBM XLF 16.1.0
• NCIDIA Titan V: CUDA 9.2
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5) Datasets: The “puck-cast” mesh file located in the meshes folder
of the Truchas Kernels repository was used for all experiments.

C. Installation
See the current build instructions on the Truchas Kernels GitLab repos-

itory. The repository’s config folder contains a cmake configuration file
for each of the compilers used in the experiment. For each installation,
the -DCMAKE BUILD TYPE=RELEASE cmake flag was used to enable
compiler optimizations and disable debugging code.

D. Experiment workflow
The existing Gradient and Mimetic Finite Difference Kernel were extracted

from the Truchas repository and placed into a timing harness to experiment
with the different ports. The driver programs that execute and time the
extracted kernels are available in the Truchas Kernels repository.

Each experiment was run on a single node. OpenMP settings
OMP PLACES=cores and OMP PROC BIND=spread were used for all
OpenMP CPU experiments. The number of OpenMP threads was set to the
maximum number of threads per node, as shown in Table X.

Architectural Efficiency was computed as the ratio of main memory
bandwidth of the computational kernel to the main memory bandwidth of
a STREAM benchmark. The STREAM benchmarks for Intel® CPUs were
obtained from the roof line plots generated by Intel® Advisor 2018. The
STREAM benchmarks for IBM CPUs and Nvidia GPUs were calculated using
the different STREAM implementations provided by the BabelStream [36]
suite. BabelStream’s OpenMP CPU, OpenMP GPU offloading, and CUDA
implementations were compared against the corresponding optimization ap-
proaches.

E. Evaluation and expected result
Similar changes to the code can be made as is shown in the source code

excerpts in the paper. Similar performance results should be obtained.

F. Experiment customization
Ports to other parallel frameworks and hardware can be made to see what

performance might be obtained as well as the amount of code that needs to
be changed. The hours required to make the port can be compared to those
presented in the paper. An evaluation of a single-source pathway can be made
along with a code divergence assessment.
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