
User-Directed Loop-Transformations in Clang
Michael Kruse

Argonne Leadership Computing Facility
Argonne National Laboratory

Argonne, USA
mkruse@anl.gov

Hal Finkel
Argonne Leadership Computing Facility

Argonne National Laboratory
Argonne, USA

hfinkel@anl.gov

Abstract—Directives for the compiler such as pragmas can
help programmers to separate an algorithm’s semantics from
its optimization. This keeps the code understandable and easier
to optimize for different platforms. Simple transformations such
as loop unrolling are already implemented in most mainstream
compilers. We recently submitted a proposal to add generalized
loop transformations to the OpenMP standard. We are also
working on an implementation in LLVM/Clang/Polly to show its
feasibility and usefulness. The current prototype allows applying
patterns common to matrix-matrix multiplication optimizations.

Index Terms—OpenMP, Pragma, Loop Transformation,
C/C++, Clang, LLVM, Polly

I. MOTIVATION

Almost all processor time is spent in some kind of loop, and
as a result, loops are a primary target for program optimization
efforts. Changing the code directly comes with the disadvantage
of making the code much less maintainable. That is, it makes
reading and understanding the code more difficult, bugs occur
easier and making semantic changes that would be simple in
an unoptimized version might require large changes in the
optimized variant. Porting to a new system architecture may
require redoing the entire optimization effort and maintain
several copies of the same code each optimized for a different
target, even if the optimization does not get down to the
assembly level. Understandably, this is usually only done for
the most performance-critical functions of a code base, if at
all.

For this reason, mainstream compilers implement pragma
directives with the goal of separating the code’s semantics
from its optimization. That is, the code should compute the
same result if the directives are not present. For instance,
pragmas defined by the OpenMP standard [1] and supported
by most of the mainstream compilers will parallelize code
to run using multiple threads on the same machine. An
alternative is to use platform-specific thread libraries such as
pthreads. OpenMP also defines directives for vectorization and
accelerator offloading. Besides OpenMP, there are a few more
sets of pragma directives, such as OpenACC [2], OmpSs [3],
OpenHMPP [4], OpenStream [5], etc., with limited compiler
support.

Besides the standardized pragmas, most compilers implement
pragmas specific to their implementation. Table I shows a
selection of pragmas supported by popular compilers. By their
nature, support and syntax varies heavily between compilers.

Only #pragma unroll has broad support. #pragma ivdep made
popular by icc and Cray to help vectorization is mimicked by
other compilers as well, but with different interpretations of
its meaning. However, no compiler allows applying multiple
transformations on a single loop systematically.

In addition to straightforward trial-and-error execution time
optimization, code transformation pragmas can be useful for
machine-learning assisted autotuning. The OpenMP approach
is to make the programmer responsible for the semantic
correctness of the transformation. This unfortunately makes it
hard for an autotuner which only measures the timing difference
without understanding the code. Such an autotuner would
therefore likely suggest transformations that make the program
return wrong results or crash. Assistance by the compiler which
understands the semantics and thus can either refuse to apply
a transformation or insert fallback code (code versioning) that
is executed instead if the transformation is unsafe enables
loop autotuning. Even for programmer-controlled programs,
warnings by the compiler about transformations that might
change the program’s result can be helpful.

In summary, pragma directives for code transformations
are useful for assisting program optimization and are already
widely used. However, outside of OpenMP, these cannot be
used for portable code since compilers disagree on syntax,
semantics, and only support a subset of transformations.

Our contributions for improving the usability of user-directed
loop transformations are

• the idea of making user-directed loop transformations
arbitrarily composable,

• an effort to standardize loop-transformation pragmas in
OpenMP [19], and

• a prototype implementation using Clang and Polly that
implements additional loop-transformation pragmas.

II. PRAGMA DIRECTIVES IN CLANG

Clang in the current version (7.0) already supports the
following pragma directives:

• Thread-parallelism: #pragma omp parallel, #pragma omp task,
etc.

• Accelerator offloading: #pragma omp target
• #pragma clang loop unroll (or #pragma unroll)
• #pragma unroll_and_jam

• #pragma clang loop distribute(enable)

• #pragma clang loop vectorize(enable) (or #pragma omp simd)

Transformation Syntax Compiler Support

Threading #pragma omp parallel for OpenMP [1]
#pragma loop(hint_parallel(0)) msvc [6]
#pragma parallel icc [7]
#pragma concur PGI [8]

Offloading #pragma omp target OpenMP [1]
#pragma acc kernels OpenACC [2]
#pragma offload icc [7]

Unrolling #pragma unroll
icc [7], xlc [9], clang [10], Oracle [11],
PGI [8], SGI [12], HP [13]

#pragma clang loop unroll(enable) clang [14]
#pragma GCC unroll n gcc [15]
#pragma _CRI unroll Cray [16]

Unroll-and-jam #pragma unroll_and_jam icc [7], clang [17]
#pragma unroll SGI [12]
#pragma unrollandfuse xlc [9]
#pragma stream_unroll xlc [9]

Loop fusion #pragma nofusion icc [7]
#pragma fuse SGI [12]
#pragma _CRI fusion Cray [16]

Loop distribution #pragma distribute_point icc [7]
#pragma clang loop distribute(enable) clang[14]
#pragma fission SGI [12]
#pragma _CRI nofission Cray [16]

Loop blocking #pragma block_loop xlc [9]
#pragma blocking size SGI [12]
#pragma _CRI blockingsize Cray [16]

Vectorization #pragma omp simd OpenMP [1]
#pragma simd icc [7]
#pragma vector icc [7], PGI [8]
#pragma loop(no_vector) msvc [6]
#pragma clang loop vectorize(enable) clang [14, 18]

Interleaving #pragma clang loop interleave(enable) clang [14, 18]
Software pipelining #pragma swp icc [7]

#pragma pipeloop Oracle [11]
Loop name #pragma loopid xlc [9]

Loop versioning #pragma altcode PGI [8]
Loop-invariant code motion #pragma noinvarif PGI [8]

Prefetching #pragma mem prefetch PGI [8]
#pragma prefetch SGI [12]

Interchange #pragma interchange SGI [12]
#pragma _CRI interchange Cray [16]

If-conversion #pragma IF_CONVERT HP [13]
Collapse loops #pragma _CRI collapse Cray [16]

Assume iteration independence #pragma ivdep icc [7], PGI [8], SGI [12],
#pragma GCC ivdep gcc [15]
#pragma loop(ivdep) msvc [6]
#pragma nomemorydepend Oracle [11]
#pragma nodepchk PGI [8], HP [13]

Iteration count estimation #pragma loop_count(n) icc [7]

TABLE I: Loop pragmas and the compilers which support them

• #pragma clang loop interleave(enable)

A. Front-End

Clang’s current architecture (shown in Fig. 1) has two places
where code transformations occur:

1) OpenMP (except #pragma omp simd) is implemented at the
front-end level: The generated LLVM-IR contains calls
to the OpenMP runtime.

2) Compiler-driven optimizations are implemented in the mid-
end: A set of transformation passes that each consume
LLVM-IR with loops and output transformed IR, but
metadata attached to loops can influence the passes’
decisions.

This split unfortunately means that OpenMP-parallel loops
are opaque to the LLVM passes further down the pipeline.

Also, loops that are the result of other transformations (e.g.
loop distribution) cannot be parallelized this way because the
parallelization must have happened earlier in the front-end.

Multiple groups are working on improving the situation by
adding parallel semantics to the IR specification [20, 21]. These
and other approaches have been presented on LLVM’s mailing
list [22, 23] or its conferences [24, 25].

B. Mid-End

Any transformation pragma not handled in the front-end,
including #pragma omp simd, is lowered to loop metadata. Meta-
data is a mechanism for annotating LLVM IR instructions with
additional information, such as debug info. Passes can look up
these annotations and change their behavior accordingly. An

OpenM
P

ru
nt

im
e

ca
lls#pragma ...

for (int i=...)

. . .

main.c IR

asm
main.s

Canonicalization passes

Loop optimization passes

Polly

LoopVectorizer

Late Mid-End passes

Target Backend

LLVM

Lexer

Parser

Preprocessor

Semantic Analyzer

IR Generation

Clang

#pragma

#pragma

Loop
m

et
ad

at
a

Fig. 1: Clang/LLVM compiler pipeline

LLVM Pass Metadata

(Simple-)LoopUnswitch none
LoopIdiom none
LoopDeletion none
LoopInterchange∗ none
SimpleLoopUnroll llvm.loop.unroll.*

LoopReroll∗ none
LoopVersioningLICM+∗ llvm.loop.licm_versioning.disable

LoopDistribute+ llvm.loop.distribute.enable

LoopVectorize+
llvm.loop.vectorize.*

llvm.loop.interleave.count

llvm.loop.isvectorized

LoopLoadElimination+ none
LoopUnrollAndJam∗ llvm.loop.unroll_and_jam.*

LoopUnroll llvm.loop.unroll.*

various llvm.mem.parallel_loop_access

TABLE II: Loop transformation passes in the pipeline order and
the metadata they process. Loop passes that canonicalize or only
modify/move instructions without changing the loop structure are not
included. Passes marked as ∗ are not added to any default pipeline
(such as -O3). Passes with a + marker can do code versioning.

overview of loop transformation passes and the metadata they
look for is shown in Table II.

Some of the passes must be enabled explicitly, even when
using the higher optimization level. For instance, the switch
-enable-unroll-and-jam adds the LoopUnrollAndJam pass to
the pipeline. When using clang, -mllvm -enable-unroll-and-jam
has to be used. When not in the pass pipeline, any
#pragma unroll_and_jam will be silently ignored.

For each function, the transformations are executed in the
order of the passes in the pipeline. This implicitly defines order
in case multiple pragmas are defined on the same loop. For
instance,
#pragma clang loop vectorize(enable) distribute(enable)

will first try to distribute a loop, then vectorize the output
loops. The order of the directives and/or pragmas is irrelevant.
With this design it is not possible to apply transformations
in any other order, similar to the transformation of OpenMP
in the front-end. For instance, it is not possible to distribute
a loop and then recognize a memcpy in one of the resulting
loops using LoopIdiom. It is also not possible to apply a
transformation multiple times, unless the responsible pass is
scheduled multiple times as well.

Ideally, the pass structure of the mid-end should be an
implementation detail, but as we have seen, it is visible through

the execution order of the pragmas. Implementation details can
change between versions, and even the optimization level (-O0,
-O1, . . .).

Loop passes can use LoopVersioning to get a clone of the
instructions and control flow they want to transform. That is,
each loop transformation makes its own copy of the code, with
a potential code growth that is exponential in the number of
passes since the versioned fallback code may still be optimized
by further loop passes. The pass pipeline has up to 4 passes
which potentially version, leading to up to 16 variants of the
same code. In addition, many versioning conditions, such as
checking for array aliasing, will be similar or equal for each
versioning.

III. EXTENDING LOOP-TRANSFORMATIONS PRAGMAS

We are working on improving support for user-directed
code transformations in Clang, especially loop transformations.
This includes addressing the shortcomings of the existing
infrastructure described in the previous section and entirely
new transformations.

If we only improve code transformations in Clang, the
problem of the non-portability like for any of the pragmas
in Table I remains. For this reason, we submitted a proposal
for inclusion into the OpenMP standard [19]. We hope that
this will improve the adoption of extended pragmas.

No discussion about an OpenMP standardization has started
yet, hence in this paper we only describe our prototype
implementation in Clang. In particular, the pragma syntax
is different because the #pragma omp keyword is reserved for
standardized OpenMP directives.

A. Transformation Order

The transformation order of the current pragmas is basi-
cally undefined. For the limited set of pragmas available,
transformations are either commutative or a different order
makes little sense. However, for additional transformations, the
transformation order may become important.

The idea is that a pragma applies to the code that follows.
That is, if the next line is a canonical for-loop, then that loop is
transformed. If the next line is another pragma, then the output
of that pragma is transformed. This means that the example
#pragma clang loop reverse

#pragma clang loop unroll factor(2)

for (int i = 0; i < 128; i+=1)
Stmt(i);

will be partially unrolled by a factor of 2, then reversed. This
will yield code comparable to
for (int i = 126; i >= 0; i-=2) {
Stmt(i);

Stmt(i+1);

}

instead of
for (int i = 127; i >= 0; i-=2) {
Stmt(i);

Stmt(i-1);

}

that would be the result if the transformations were applied in
the reverse order.

B. Followup-Attributes

The metadata from Table II is used as a bag of attributes to
a loop. By definition, their order is unimportant and cannot be
used to pass ordered transformations.

In a first RFC on the LLVM mailing list [26], we suggested
to add a function-wide (ordered) list of transformations of
any loop in the function. While this works and our current
prototype uses it, it has some problems. First, the function
inliner needs to merge such lists. Second, it requires a reference
to the loop to transform. Unfortunately, due to the nature of
IR metadata, the “loop id” currently used by LLVM changes
whenever the loop’s attribute list is changed1. Third, the same
“loop id” can be assigned to multiple loops. Naive cloning of
code (like LoopVersioning does) will reuse the same “loop id”
for a copied loop. There are even regression tests for multiple
loops with the same “id”. Fourth, transformation passes need
to search the entire list for transformations they can apply and
ensure that no other transformation is applied before it.

Our eventual approach [27] is more compatible with “loop
ids” as bag of attributes by specifying new attributes. Every
transformation gets followup-attribute lists. The list defines
the bag of attributes a result loop will have. For instance,
the llvm.loop.unroll.followup_unrolled attribute contains the
metadata for the (partially) unrolled output loop. If not specified,
the pass can automatically define the attributes; in case of
LoopUnroll, it uses llvm.loop.unroll.disable to inhibit further
unrolling.

Transformations can also have multiple output loops. In case
of partial unrolling, there can be an epilogue for iterations that
do not fill up the unroll factor. Its attributes can be defined using
the llvm.loop.unroll.followup_remainder attribute. Typically, this
loop is completely unrolled such there is no loop the attributes
can be assigned to.

If a transformation cannot be applied for any reason, it
is straightforward to also ignore the followup-attributes as
they are meant for the transformed loop which does not
exist. We decided against applying some followups even if a
transformation failed (such as applying followup_unrolled even
if the partial unrolling failed) or add an additional “backup”
attribute list. This would significantly increase the systems
complexity and the expected reaction is to fix the input code
and/or transformation instead of specifying another chain of
transformations.

Instead, if the transformation was explicitly requested by
the programmer (which we call “forced”), the compiler should
emit a warning that something did not apply as expected. In
our proposal, this is done by a new WarnMissedTransforma-
tionsPass which is inserted into the pass manager after all
transformation pass have run. Hence, in contrast to LLVM’s
current approach, it will even emit a warning if the responsible
pass is not even in the pipeline. This unfortunately also means
that the WarnMissedTransformations pass needs to understand
all transformation metadata.

1For instance, LoopVersioningLICM adds llvm.loop.licm_versioning.disable
to indicate that it does not have to run on a loop again.

The advantage to this approach is that is more compatible
with the current implementation. If followup-attributes are not
used, the behavior remains the same, even without mitigations
such as IR conversions through AutoUpgrade.

C. Syntax

Unfortunately, the existing #pragma clang loop syntax already
has a de-facto defined order, which is the order in Table II. To
maintain compatibility, we have to introduce a distinguishable
new syntax. When exclusively using the old syntax, clang has
to emit the order that original pipeline would have. To avoid
confusion, we disallow mixing old and new syntax.

The old syntax is

#pragma clang loop transformation(option) . . .

and allows multiple transformation(option) on each line.
Multiple options for the same transformation can be specified
by using multiple variants of transformation. For instance,
vectorize(assume_safety) vectorize_width(4) tells the compiler to
skip semantic legality checks and use an SIMD width of 4.
More complicated transformations such as tiling can have
many options, which makes this syntax impractical. It is also
ambiguous whether a transformation should be applied multiple
times or whether only an option is set.

Since our goal is an inclusion into the OpenMP standard,
we use its directive-clause syntax:

#pragma clang loop transformation switch option(argument) . . .

The old and new syntax are distinguishable by the option in
parenthesis immediately following the transformation keyword.

Interestingly, Clang’s mechanisms for #pragma clang loop and
OpenMP are quite different. The prototype implementations
is oriented towards the #pragma clang loop route, because it is
also used for the preexisting loop transformation pragmas and
in contrast to the OpenMP path, is less invasive.

1) Preprocessor: The clang-loop pragma handler takes the
tokens of each clause (transformation(option)), wraps each
of them into a annot_pragma_loop_hint token and pushes that
back into the token stream. For out new syntax we introduce a
new token annot_pragma_loop_transform which contains the entire
line of tokens of the pragma instead of individual clauses.
The OpenMP pragma preprocessor also takes the entire line
of tokens, encloses them between a annot_pragma_openmp and
annot_pragma_openmp_end token, and pushes them all back to into
the token stream.

This step is necessary because the tokens might be inside
a _Pragma("...") of a macro. The preprocessor might therefore
duplicate the tokens wherever the macro is expanded. The
special tokens act as indicators for the parser that such a
directive has been inserted.

2) Parser: The parser will handle the indicator tokens at
expected positions. If an annot_pragma_loop_hint is encountered,
the transformation and its option are parsed, and the result used
to initialize an attribute of type LoopHintAttr. Since the data a
LoopHintAttr can store is limited and unspecific, we introduce

a separate attribute for each of our new transformations when
encountering a annot_pragma_loop_transform.

The OpenMP parser on the other hand does not create
attributes, but uses the Sema object (calling its ActOn...

methods), the semantic analyzer which also creates the AST.
For parsing expressions according to the language rules, its
tokens must be on the main token stack. For annot_pragma_loop_*
this means that the wrapped tokens have to be pushed back to
the stack before the expression parser is invoked. This is easier
for the OpenMP pragma tokens which are already on the stack,
terminated by a annot_pragma_openmp_end token that inhibits the
expression parser from consuming tokens that do not belong
to the pragma.

3) Semantic Analysis: The semantic analyzer is responsible
for building the abstract syntax tree. For the LoopHintAttr and
other transformation attributes, it creates an AttributedStmt as
parent of the node that represents the loop that is annotated. It
also checks the semantic correctness of the attributes, for in-
stance, it emits warnings when the same annot_pragma_loop_hint
clause is used more than once.

In the case of OpenMP, the pragmas are more invasive.
Every OpenMP-annotated loop is nested into a CapturedStmt
region which is handled like an outlined function, even for
#pragma omp simd. Moreover, most OpenMP directives have their
own type of AST node (in addition to CapturedStmt). That
is, the AST will look differently compared to if OpenMP was
disabled.

4) Code Generation: While Clang generates LLVM-IR for
a loop, it also collects loop attributes. After the IR of the
loop skeleton (loop header, latch, etc.) is complete, Clang
sets the loop’s metadata (see Table II). Of course, loops can
be nested and hence there is a stack if loop attributes called
LoopInfoStack.

Since OpenMP is handled in the front-end, there is much
more to do. Depending on the directive, a CapturedStmt is
either outlined in a separate function or into the same function.
In the former case, a call to the OpenMP runtime (libomp) with
a pointer to the outlined function. In other cases, the captured-
but-expanded-inline loop body will be simplified again in the
mid-end. For the #pragma omp simd directive, the loop will receive
a meta annotation just as in the #pragma clang loop vectorize
case.

D. Composibility

Our goal is that the loops resulting from a transformation
can again be transformed using a pragma. For clang, there is
the problem that thread-parallelism is handled in the front-end
and LLVM-IR has no semantics for parallelism. That is, its
pragmas cannot apply on loops that are only created in the
mid-end, nor can a #pragma omp for loop be processed in the
mid-end. As a temporarily solution, we think about adding
non-OpenMP pragmas for thread-parallelism that are handled
in the mid-end, such as #pragma clang loop thread_parallel.

Moreover, transformations can have more than one input loop
(such as OpenMP’s collapse clause), and more than one output
loop (such as strip-mining). To be able to refer to specific

loops, we allow to assign identifiers to loop. A loop identifier
must be unique within a function. For instance,
#pragma clang loop id(i)

for (int i = 0; i < n; i += 1)

assigns the identifier i to the loop. In case a loop is a canonical
for-loop, its induction variable name might be used as a loop
identifier unless it is ambiguous.

The loop identifiers can be used by transformations to refer
to loops that are not on the next line. For instance, unroll-
and-jam requires a loop to be unrolled and one to be jammed.
In the following example, the loop i would be unrolled-and-
jammed into the k-loop (instead the j-loop which would yield
two k-loops inside it).
#pragma clang loop(i,k) unroll_and_jam factor(2)

for (int i = 0; i < n; i += 1)
for (int j = 0; j < n; j += 1)
for (int k = 0; k < n; k += 1)

In case there are multiple output loops, the pragma can
define the identifiers of the those:
#pragma clang loop stripmine size(4) pit_id(i1) strip_id(i2)

for (int i = 0; i < 128; i += 1)

Its result is equivalent to as if the programmer had written the
following.
#pragma clang loop id(i1)

for (int i1 = 0; i1 < 128; i1 += 4)
#pragma clang loop id(i2)

for (int i2 = i1; i2 < i1+4; i2 += 1)

Some transformations can be understood as syntactic sugar
for other transformations. For instance, the aforementioned
unroll-and-jam can also be expressed as an unroll followed be
(one or multiple) loop fusions. Standard loop tiling is nothing
else than strip-mining of each loop, then permute the loop nest
order such that the strip loops become the interior loops.

E. Additional Transformations
Some new transformations have already been mentioned in

the examples for illustration purposes. Many more are possible,
see Table I and [19] for ideas.

In our prototype, we started implementing a limited set that
are of immediate interest for us, mainly optimizing a matrix-
matrix multiplication as shown in Section IV. In addition to
#pragma clang loop id, we implemented the following pragmas.

1) Loop Reversal: Invert the iteration order of a loop. I.e.
#pragma clang loop reverse

for (int i = 0; i < n; i+=1)

is transformed into
for (int i = n-1; i >= 0; i-=1)

This was the first transformation we implemented because
it is one of the simplest: Exactly one input and output loop.

2) Loop Interchange: Permute the order of perfectly nested
loops. For instance, the result of
#pragma clang loop(i,j) interchange permutation(j,i)

for (int i = 0; i < n; i+=1)
for (int j = 0; j < m; j+=1)

is
for (int j = 0; j < m; j+=1)
for (int i = 0; i < n; i+=1)

The order of more than two loops can be altered by explicitly
specifying the permutation.

3) Tiling: Tiling is a technique to improve temporal locality
of accesses, especially of stencils. The example
#pragma clang loop(i,j) tile sizes(4,8)

for (int i = 0; i < n; i+=1)
for (int j = 0; j < m; j+=1)

should be transformed into the following:
for (int i1 = 0; i1 < n; i1+=4)
for (int j1 = 0; j1 < m; j1+=8)
for (int i2 = i1; i2 < n && i2 < i1+4; i2+=1)
for (int j2 = j2; j2 < m && j2 < j1+8; j2+=1)

Any number of loops can be tiled. Tiling just a single loop
is the same as strip-mining.

4) Array Packing: Temporarily copies the data of a loop’s
working set into a new buffer. This may improve access locality
because the extracted working set fits into a cache level and/or
can be prefetched. For example, the loop nest
for (int i = 0; i < n; i+=1)
#pragma clang loop pack array(A)

for (int j = 0; j < 32; j+=1)
f(A[j][i], i);

is transformed to something approximately equivalent of:
auto Packed_A[32];
for (int i = 0; i < n; i+=1) {
for (int _ = 0; _ < 32; _+=1)
Packed_A[_] = A[_][i]; // Copy-in

for (int j = 0; j < 32; j+=1)
f(Packed_A[j], i);

}

By default, the packed array is allocated on the stack, but
with the clause allocate(malloc), the memory will be allocated
(and free’d) on the heap.

F. Polly as Loop-Transformer

Writing a new loop transformation pass in LLVM is a
significant amount of work since it works on the low-level IR.
Some components such LoopVersioning can be reused, but
even the dependency analysis will probably have to be written
from scratch. This is despite LLVM has multiple dependency
analyses (AliasAnalysis, DependenceInfo, LoopAccessInfo,
PolyhedralInfo), but which have all been written with specific
applications in mind.

Additionally, the pass manager architecture (neither the new
nor “legacy”) does not allow dynamically repeated application
of transformation passes. This would also amplify the code
blowup due to repeated code versioning.

For our prototype implementation, we are using Polly [28] to
implement the additional transformations. Polly takes LLVM-
IR code and ‘lifts’ is into another representation –schedule
trees [29] – in which loop transformations are easier to express.
To transform loops, only the schedule tree needs to be changed
and Polly takes care for everything else.

Using Polly, we can implement most transformations as
follows. First, let Polly create a schedule tree for a loop nest,
then iteratively apply each transformation in the metadata to the
schedule tree. For every transformation we can check whether
it violates any dependencies and if violations are found, act
according to a chosen policy. When done, Polly generates
LLVM-IR from the schedule tree including code versioning.

Let’s consider an example on how schedule trees are
transformed. Below we see the schedule tree of a single
loop with two statements: StmtA and StmtB. Both statements
execute in the same loop. The execution order of the loop is
defined by the lexicographic ordering of the band’s schedule
function. Hence, the effective execution order of all statements
is: StmtA[0], StmtB[0], StmtA[1], StmtB[1],

Domain: { StmtA[i], StmtB[i] }

Band: {StmtA[i]->[i];StmtB[i]->[i] | 0 ≤ i < n}

Sequence

StmtA[i] StmtB[i]

Interchanging the band and sequence node in the schedule
tree is isomorphic to a loop distribution of the source code it
represents, as shown below. Here, the sequence ensures that all
instances of StmtA are executed before any instance of StmtB,
but the band ordering between the statement instances is not
changed. Therefore, this tree represents the execution order
StmtA[0], StmtA[1], . . . , StmtB[0], StmtB[1],

Domain: { StmtA[i], StmtB[i] }

Sequence

{StmtA[i]->[i] | 0 ≤ i < n} {StmtB[i]->[i] | 0 ≤ i < n}

StmtA[i] StmtB[i]

Polly’s infrastructure then converts the schedule tree into an
AST and then back to LLVM-IR, but with the transformation
applied. Only a single fallback copy for arbitrarily many
transformations is generated, if needed at all. Once the
runtime check confirms that the preconditions making the
transformation valid (e.g. no overlapping memory regions),
no additional checking is required. Another advantage of a
single dedicated loop transformation pass is that the analyses,
including dependency analysis, needs to happen once only,
instead repeatedly for every transformation.

If desired, Polly can also apply its loop nest optimizer which
utilizes a linear program solver before IR generation. We add
artificial transformational dependencies to ensure that user-
defined transformations are not overridden, but we did not
implement this is the prototype yet.

As an exception, #pragma clang loop pack cannot implemented
using this technique as it is mainly a data layout transformation.
Only the copy-in and copy-out to the local memory allocation
modify the schedule tree; these are new statements that are
inserted before, respectively after the code that uses them. Parts
of the code already existed in Polly as part of its matrix-matrix
multiplication optimization [30], but had to be generalized to

#if __kabylake__

#pragma clang loop(j2) pack array(A)

#pragma clang loop(i1) pack array(B)

#pragma clang loop(i1,j1,k1,i2,j2,k2) interchange \

permutation(j1,k1,i1,j2,i2,k2)

#pragma clang loop(i,j,k) tile sizes(96,2048,256) \

pit_ids(i1,j1,k1) tile_ids(i2,j2,k2)

#elif __haswell__

[...]

#endif

#pragma clang loop id(i)

for (int i = 0; i < M; i+=1)
#pragma clang loop id(j)

for (int j = 0; j < N; j+=1)
#pragma clang loop id(k)

for (int k = 0; k < K; k+=1)
C[i][j] += A[i][k] * B[k][j];

Listing 1: Optimization of matrix-matrix multiplication using our
proposed pragmas. The tile sizes were derived using the analytical
model in [33] for Intel’s Kaby Lake architecture.

arbitrary loops. To define an index function and size of the
packed array, we use the bounding box technique from [31].
The possibility to allocate such arrays on the heap instead
on the stack (allocate(malloc)) has been added in a Google
Summer of Code project [32].

IV. MATRIX-MATRIX MULTIPLICATION

We chose this matrix-matrix multiplication to illustrate the
power of user-directed transformations with relatively few
lines and separation of semantics and optimization through
pragmas. Matrix-matrix multiplication is one of the best studied
problems for performance-optimization with many BLAS
library implementations that we can assume to be close to
the best attainable performance. Comparing to them allows
estimating the gap between hand-optimized implementations
and compiler-produced code. In this paper we are not searching
for the best transformation chains for arbitrary algorithms2, but
to show how pragmas can make implementing such algorithms
easier, potentially even in those specialized libraries.

Fortunately, the paper [33] describes the common techniques
for optimizing matrix-matrix multiplication such that we do not
need to find the optimal transformations ourselves. Our version
is shown in Listing 1, which also illustrates how different
transformations can be applied for different compilation targets.
It only contains the most performance-sensitive loop. Most
of the time, matrix-matrix multiplication is written including
a statement C[i][j] = 0 in the loop nest to clear the content
the array C might have had before. To also optimize this
formulation, we would have to loop-distribute the set-zero
statement and inner reduction into two different loop nests.
Unfortunately, our prototype does not support loop distribution
yet and LLVM’s LoopDistribution pass is not able to handle
deeply nested loops. With loop distribution, the set-zero loop
nest could be transformed into a single memset call. Again,

2We could only compare the pragma implementation with our manual
replication of the same – which should behave identically.

LLVM’s LoopIdiom pass only supports innermost loops such
that it would result in a loop of memsets.

Polly’s main output is LLVM’s intermediate representation,
but it can also dump the AST representation from which the
IR is generated, shown in Listing 2. The AST representation
is one of isl’s data structures.

The runtime check verifies the assumptions that must hold
to make this transformation valid. For instance, it ensures that
that arrays A and B do not overlap.

It is important that the array Packed_B is transposed. Oth-
erwise, the accesses to are strided (not consecutive) in the
innermost loop c5 such that the processor’s prefetcher will not
work as efficient and the L1 cache lines are not fully used. In
our experiments, without transpose the kernel was ten times
slower.

The technique in [33] suggests that the dimensions j2
and i2 should be vectorized. In contrast to the loop k2,
these do not carry the reduction, hence have less data-flow
dependencies. Unfortunately, LLVM’s LoopVectorize currently
only supports innermost loops, hence the k2-loop is the only
one we can directly vectorize, but its heuristics decide that
it is profitable without us having to add another pragma.
Extending LoopVectorize to more than innermost loops is
work in progress [34]. Another project addressing the issue
is the Unified Region Vectorizer [35], which is not part of
LLVM. Polly’s matrix-matrix multiplication optimization [30]
has a workaround that unroll-and-jams (it calls it register
tiling) the loops to be vectorized and then relies on the
SLPVectorizer to combine the unrolled instructions to vector
instructions. The same unroll-and-jam is also applied on the
packed arrays. We could also try to use Polly’s vector code
generator (-mllvm -polly-vectorizer) which unfortunately also
prioritizes innermost loops.

A. Effectiveness

We tested the execution speed of Listings 1 and 2, and
compared it compared it with other implementations such as
various BLAS libraries. All execution times were taken for
a single-thread double-precision matrix-multiplication kernel
using the parameters M = 2000, N = 2300, K = 2600. The
results are shown in Fig. 2.

The naïve version (Listing 1 without pragmas) compiled
with Clang 7.0 executes in 75 seconds (gcc’s results are
similar). With the pragma transformations manually applied
(like Listing 2 but without floord calls) the execution time
shrinks to 3.9 seconds. If Polly applies these transformations
as directed by the pragmas in Listing 2, the runtime shrinks
even more to 2.2 seconds. This is possible because Polly applies
additional metadata that indicate that, for instance, the arrays do
not alias. Polly’s matrix-matrix multiplication recognition [30]
optimizes the kernel such that it runs in 1.14s, which is 42%
of the processor’s theoretical floating-point limit. This speed
should eventually also be reachable using pragmas after we
improved the vectorizer situation.

By comparison, Netlib’s reference BLAS implemented
requires 33.5 seconds to do the multiplication. ATLAS from

double Packed_B[256][2048];
double Packed_A[96][256];
if (`\emph{runtime check}`) {
if (M >= 1)
for (int c0 = 0; c0 <= floord(N - 1, 2048); c0 += 1) // Loop j1

for (int c1 = 0; c1 <= floord(K - 1, 256); c1 += 1) { // Loop k1

// Copy-in: B -> Packed_B

for (int c4 = 0; c4 <= min(2047, N - 2048 * c0 - 1); c4 += 1)
for (int c5 = 0; c5 <= min(255, K - 256 * c1 - 1); c5 += 1)
Packed_B[c4][c5] = B[256 * c1 + c5][2048 * c0 + c4];

for (int c2 = 0; c2 <= floord(M - 1, 96); c2 += 1) { // Loop i1

// Copy-in: A -> Packed_A

for (int c6 = 0; c6 <= min(95, M - 96 * c2 - 1); c6 += 1)
for (int c7 = 0; c7 <= min(255, K - 256 * c1 - 1); c7 += 1)
Packed_A[c6][c7] = A[96 * c2 + c6][256 * c1 + c7];

for (int c3 = 0; c3 <= min(2047, N - 2048 * c0 - 1); c3 += 1) // Loop j2

for (int c4 = 0; c4 <= min(95, M - 96 * c2 - 1); c4 += 1) // Loop i2

for (int c5 = 0; c5 <= min(255, K - 256 * c1 - 1); c5 += 1) // Loop k2
C[96 * c2 + c4][2048 * c0 + c3] += Packed_A[c4][c5] * Packed_B[c3][c5];

}

}

} else { /* original code */ }

Listing 2: Transformed loop nest of Listing 1; this is the AST as emitted by Polly (-mllvm -debug-only=polly-ast) modified for readability.

0 10 20 30 40 50 60 70 80 90 100

-O3 -march=native
Netlib CBLAS (Ubuntu 16.04)

manual replication
ATLAS (Ubuntu 18.04)

#pragma clang loop
OpenBLAS (Ubuntu 18.04)

Polly MatMul
ATLAS (machine-optimized)

OpenBLAS (machine-optimized)
Intel MKL 2018.3

theoretical peak

33.5s (1.6%)

2.2s (24%)

0.9s (60%)

1.27s (42%)

0.64s (83%)
0.59s (89%)

74.9s (0.7%)

3.9s (14%)

2.2s (24%)

1.25s (42%)

0.53s

Floating-Point operations per time unit as percentage of the theoretical peak

Fig. 2: Comparison of double-precision matrix-multiplication performance on an Intel Core i7 7700HQ (Kaby Lake architecture), 2.8 Ghz,
Turbo Boost off

the Ubuntu 18.04 (Xenial Xerus) software repository needs
2.2s for the same work, but when optimized for the target
machine, only needs 0.9 seconds. OpenBLAS, also from the
Ubuntu software repository, needs 1.3 seconds, and only 0.6
seconds when compiled for the target machine. Intel’s MKL
library runs in 0.59 seconds, which is impressive 89% of the
theoretical flop-limited peak performance. ATLAS, OpenBLAS
and MKL use hand-written vector kernels for the innermost
tiles.

V. RELATED WORK

As we have seen in Table I, other compilers also implement
pragmas. Most of them only allow controlling their existing
loop optimization passes in the pipeline in the same manner as

LLVM does. For instance, gcc version 8.1 [15] adds support for
#pragma unroll, but does not support any other transformation
pragma although gcc has more loop transformations.

We used Polly to implement most loop transformations,
but by default it tries to automatically determine which
transformations are profitable using linear programming. Apart
from the equation system solver, Polly also applies tiling
and a matrix-matrix multiplication optimization [30] whenever
possible but can only be controlled via command-line flags,
not in-source annotations.

IBM’s xlf compiler has a dedicated loop transformation
component, called ASTI [36]. It’s data structure is the Loop
Structure Graph (LSG) which shares some similarities to isl’s
schedule trees and might be able to carry-out xlf’s supported

pragmas.
Silicon Graphics also developed a compiler with a dedicated

loop transformation phase called Loop Nest Optimization
(LNO) [12] which was used to implements its numerous
(compared to other compilers) loop transformations. Today,
the compiler lives on in its derivatives. One of them is the
open source Open64 compiler [37] which also contains the
LNO component.

Multiple research groups already explored the composition
of loop transformations, many of them based on the polyhedral
model. The Unifying Reordering Framework [38] describes
loop transformations mathematically, including semantic le-
gality and code generations. The Clint [39] tool is able to
visualize multiple loop transformations.

Many source-to-source compilers can apply the loop trans-
formations themselves and generate a new source file with the
transformation baked-in. The instructions of which transforma-
tions to apply can be in the source file itself like in a comment
of the input language (Clay [40], Goofi [41], Orio [42]) or
like our proposal as a pragma (X-Language [43], HMPP [44]).
Goofi also comes with a graphical tool with a preview of
the loop transformations. The other possibility is to have the
transformations in a separate file, as done by URUK [45] and
CHiLL [46]. POET [47] uses an XML-like description file that
only contains the loop body code in the target language.

Halide [48] and Tensor Comprehensions [49] are both
libraries that include a compiler. In Halide, a syntax tree is
created from C++ expression templates. In Tensor Comprehen-
sions, the source is passed as a string which is parsed by the
library. Both libraries have objects representing the code and
calling its methods transform the represented code.

Similar to the parallel extensions in the C++17 [50] standard
library, Intel’s Threading Building Blocks [51], RAJA [52] and
Kokkos [53] are template libraries. The payload code is written
using lambdas and an execution policy specifies how it should
be called.

Our intended use case – autotuning loop transformations
– has also been explored by POET [47] and Orio [42].
The atJIT [54] project is even able to use our extended
transformation in Polly. It tries out different transformations
of a function within as single processes using a Just-In-Time
compiler.

VI. CONCLUSION

Our goal is to make more loop transformations via pragma
directives available to the programmer. Such pragmas would
make applying common loop optimization technique much
easier and allow better separation of a code’s semantics and
its optimization.

We are working on two fronts to make it happen: First, we try
to add such pragmas to the OpenMP standard [19]. This would
encourage any compiler that claims OpenMP-compatibility to
implement them.

The second approach is to implement such pragmas in
LLVM. In this paper we presented the details of our prototype
implementation using Clang to parse the pragmas and Polly to

carry-out the transformations. Experiments on matrix-matrix
multiplication code show that kernels optimized using our
pragmas can – performance-wise – be in the realm of hand-
optimized BLAS libraries.

VII. ACKNOWLEDGMENTS

This research was supported by the Exascale Computing
Project (17-SC-20-SC), a collaborative effort of two U.S.
Department of Energy organizations (Office of Science and
the National Nuclear Security Administration) responsible for
the planning and preparation of a capable exascale ecosystem,
including software, applications, hardware, advanced system
engineering, and early testbed platforms, in support of the
nations exascale computing imperative.

This research used resources of the Argonne Leadership
Computing Facility, which is a DOE Office of Science User
Facility supported under Contract DE-AC02-06CH11357.

REFERENCES

[1] OpenMP Application Program Interface Version 4.0, OpenMP Architec-
ture Review Board, Jul. 2017.

[2] The OpenACC Application Programming Interface Version 4.0,
OpenACC-Standard.org, Nov. 2017.

[3] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell, X. Martorell,
and J. Planas, “Ompss: A Proposal for Programming Heterogeneous
Multi-Core Architectures,” Parallel Processing Letters, vol. 21, no. 02,
pp. 173–193, 2011.

[4] J. M. Andión, M. Arenaz, F. Bodin, G. Rodríguez, and J. Touriño,
“Locality-Aware Automatic Parallelization for GPGPU with OpenHMPP
Directives,” International Journal of Parallel Programming, vol. 44, no. 3,
pp. 620–643, Jun. 2016.

[5] A. Pop and A. Cohen, “OpenStream: Expressiveness and Data-flow
Compilation of OpenMP Streaming Programs,” ACM Trans. Archit.
Code Optim., vol. 9, no. 4, pp. 53:1–53:25, Jan. 2013. [Online].
Available: http://doi.acm.org/10.1145/2400682.2400712

[6] C/C++ Preprocessor Reference, Microsoft. [Online]. Available:
http://docs.microsoft.com/en-us/cpp/preprocessor/loop

[7] Intel C++ Compiler 18.0 Developer Guide and Reference, Intel, May
2018.

[8] PGI version 18.7 Documentation for x86 and NVIDIA Processors, PGI.
[Online]. Available: https://www.pgroup.com/resources/docs/18.7/x86/
pgi-ref-guide/index.htm#directive-pragma-ref

[9] Product documentation for XL C/C++ for AIX, V13.1.3, IBM.
[10] Attributes in Clang. [Online]. Available: http://clang.llvm.org/docs/

AttributeReference.html
[11] Sun Studio 12: C User’s Guide, 2.8 Pragmas, Oracle Corporation.

[Online]. Available: https://docs.oracle.com/cd/E19205-01/819-5265/
bjaby/index.html

[12] MIPSpro N32/64 Compiling and Performance Tuning Guide, SGI.
[13] HP aC++/HP C A.06.29 Programmer’s Guide, Hewlett-Packard.
[14] Clang Language Extensions. [Online]. Available: http://clang.llvm.org/

docs/LanguageExtensions.html
[15] Loop-Specific Pragmas, Free Software Foundation. [Online]. Available:

http://gcc.gnu.org/onlinedocs/gcc/Loop-Specific-Pragmas.html
[16] Cray C and C++ Reference Manual (8.7), Cray. [Online]. Avail-

able: https://pubs.cray.com/content/S-2179/8.7/cray-c-and-c++-reference-
manual/scalar-optimization-directives

[17] D. Green, Add unroll_and_jam pragma handling. [Online]. Available:
https://reviews.llvm.org/rL338566

[18] Auto-Vectorization in LLVM. [Online]. Available: http://llvm.org/docs/
Vectorizers.html

[19] M. Kruse and H. Finkel, “A Proposal for Loop-Transformation
Pragmas,” CoRR, vol. abs/1805.03374, 2018. [Online]. Available:
http://arxiv.org/abs/1805.03374

[20] X. Tian, H. Saito, E. Su, J. Lin, S. Guggilla, D. Caballero, M. Masten,
A. Savonichev, M. Rice, E. Demikhovsky, A. Zaks, G. Rapaport, A. Gaba,
V. Porpodas, and E. Garcia, “LLVM Compiler Implementation for Explicit
Parallelization and SIMD Vectorization,” in Proceedings of the Fourth

http://doi.acm.org/10.1145/2400682.2400712
http://docs.microsoft.com/en-us/cpp/preprocessor/loop
https://www.pgroup.com/resources/docs/18.7/x86/pgi-ref-guide/index.htm#directive-pragma-ref
https://www.pgroup.com/resources/docs/18.7/x86/pgi-ref-guide/index.htm#directive-pragma-ref
http://clang.llvm.org/docs/AttributeReference.html
http://clang.llvm.org/docs/AttributeReference.html
https://docs.oracle.com/cd/E19205-01/819-5265/bjaby/index.html
https://docs.oracle.com/cd/E19205-01/819-5265/bjaby/index.html
http://clang.llvm.org/docs/LanguageExtensions.html
http://clang.llvm.org/docs/LanguageExtensions.html
http://gcc.gnu.org/onlinedocs/gcc/Loop-Specific-Pragmas.html
https://pubs.cray.com/content/S-2179/8.7/cray-c-and-c++-reference-manual/scalar-optimization-directives
https://pubs.cray.com/content/S-2179/8.7/cray-c-and-c++-reference-manual/scalar-optimization-directives
https://reviews.llvm.org/rL338566
http://llvm.org/docs/Vectorizers.html
http://llvm.org/docs/Vectorizers.html
http://arxiv.org/abs/1805.03374

Workshop on the LLVM Compiler Infrastructure in HPC, ser. LLVM-
HPC’17. New York, NY, USA: ACM, 2017, pp. 4:1–4:11.

[21] T. B. Schardl, W. S. Moses, and C. E. Leiserson, “Tapir: Embedding
Fork-Join Parallelism into LLVM’s Intermediate Representation,” in
Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP’17). ACM, 2017, pp. 249–
265.

[22] H. Finkel and X. Tian, “[RFC] IR-level Region Annotations,”
llvm-dev mailing list post, Jan. 2017. [Online]. Available: http:
//lists.llvm.org/pipermail/llvm-dev/2017-January/108906.html

[23] J. Doerfert, “[rfc] abstract parallel ir optimizations,” llvm-dev mailing
list post, Jun. 2018. [Online]. Available: http://lists.llvm.org/pipermail/
llvm-dev/2018-June/123841.html

[24] H. Saito, “Extending LoopVectorizer towards supporting OpenMP4.5
SIMD and outer loop auto-vectorization,” EuroLLVM 2018 presentation,
2016. [Online]. Available: http://llvm.org/devmtg/2016-11/#talk7

[25] H. Finkel, J. Doerfert, X. Tian, and G. Stelle, “A Parallel IR in
Real Life: Optimizing OpenMP,” EuroLLVM 2018 presentation, 2018.
[Online]. Available: http://llvm.org/devmtg/2018-04/talks.html#Talk_1

[26] M. Kruse, “RFC: Extending loop metadata,” llvm-dev mailing list post,
May 2018. [Online]. Available: https://lists.llvm.org/pipermail/llvm-dev/
2018-May/123690.html

[27] ——, “[Unroll/UnrollAndJam/Vectorizer/Distribute] Add followup loop
attributes,” LLVM code review, Jul. 2018. [Online]. Available:
https://reviews.llvm.org/D49281

[28] T. Grosser, H. Zheng, R. Aloor, A. Simbürger, A. Größlinger, and L.-N.
Pouchet, “Polly – Polyhedral Optimization in LLVM,” in First Interna-
tional Workshop on Polyhedral Compilation Techniques (IMPACT’11),
2011.

[29] S. Verdoolaege, S. Guelton, T. Grosser, and A. Cohen, “Schedule Trees,”
in Fourth International Workshop on Polyhedral Compilation Techniques
(IMPACT’14), 2014.

[30] R. Gareev, T. Grosser, and M. Kruse, “High-Performance Generalized
Tensor Operations: A Compiler-Oriented Approach,” ACM Trans. Archit.
Code Optim., vol. 15, no. 3, pp. 34:1–34:27, Sep. 2018.

[31] M. Kruse, “Lattice QCD Optimization and Polytopic Representations
of Distributed Memory,” Theses, Université Paris Sud - Paris XI, Sep.
2014. [Online]. Available: https://hal.inria.fr/tel-01078440

[32] N. Bonfante, “Maximal static expansion for efficient loop parallelization
on gpu,” Google Summer of Code project, 2017. [Online].
Available: http://pollylabs.org/gsoc2017/Maximal-static-expansion-for-
efficient-loop-parallelization-on-GPU.html

[33] T. M. Low, F. D. Igual, T. M. Smith, and E. S. Quintana-Orti, “Analytical
Modeling Is Enough for High-Performance BLIS,” Transactions on
Mathematical Software (TOMS), vol. 43, no. 2, pp. 12:1–12:18, Aug.
2016.

[34] A. Zaks and G. Rapaport, “Vectorizing Loops with VPlan - Current
State and Next Step,” LLVM Developer’s Meeting presentation, Oct.
2017. [Online]. Available: https://llvm.org/devmtg/2017-10/#talk17

[35] S. Moll, “The Region Vectorizer.” [Online]. Available: https:
//github.com/cdl-saarland/rv

[36] V. Sarkar, “Automatic selection of high-order transformations in the ibm
xl fortran compilers,” IBM Journal of Research and Development, vol. 41,
no. 3, pp. 233–264, May 1997.

[37] “Open64 Compiler and Tools.” [Online]. Available: https://sourceforge.
net/projects/open64/

[38] W. Kelly and W. Pugh, “A Framework for Unifying Reordering
[42] A. Hartono, B. Norris, and P. Sadayappan, “Annotation-Based Empirical

Performance Tuning Using Orio,” in Proceedings of the 23rd IEEE In-
ternational Parallel And Distributed Computing Symposium (IPDPS’09).

Transformations,” University of Maryland, Technical Report UMIACS-
TR-93-134/CS-TR-3193, 1992.

[39] O. Zinenko, S. Huot, and C. Bastoul, “Clint: A Direct Manipulation
Tool for Parallelizing Compute-Intensive Program Parts,” in 2014
IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). IEEE, 2014.

[40] L. Bagnères, O. Zinenko, S. Huot, and C. Bastoul, “Opening Polyhedral
Compiler’s Black Box,” in 14th Annual IEEE/ACM International
Symposium on Code Generation and Optimization (CGO’16). IEEE,
2016.

[41] R. Müller-Pfefferkorn, W. E. Nagel, and B. Trenkler, “Optimizing Cache
Access: A Tool for Source-to-Source Transformations and Real-Life
Compiler Tests,” in Proceedings of the 10th International Euro-Par
Conference (Euro-Par’04). Springer, 2004.
IEEE, 2009.

[43] S. Donadio, J. Brodman, T. Roeder, K. Yotov, D. Barthou, A. Cohen,
M. J. Garzarán, D. Padua, and K. Pingali, “A Language for the Compact
Representation of Multiple Program Versions,” in Proceedings of the
18th International Workshop on Languages and Compilers for Parallel
Computing (LCPC’05). Springer, 2006, pp. 136–151.

[44] R. Dolbeau, S. Bihan, and F. Bodin, “HMPP: A Hybrid Multi-core
Parallel Programming Environment,” in First Workshop on General
Purpose Processing on Graphics Processing Units (GPGPU’07), 2007.

[45] S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. Parello, M. Sigler,
and O. Temam, “Semi-Automatic Composition of Loop Transformations
for Deep Parallelism and Memory Hierarchies,” International Journal of
Parallel Programming, vol. 34, no. 3, pp. 261–317, Jun. 2006.

[46] A. Tiwari, C. Chen, J. Chame, M. Hall, and J. K. Hollingsworth,
“A Scalable Auto-tuning Framework for Compiler Optimization,” in
Proceedings of the 23rd IEEE International Parallel And Distributed
Computing Symposium (IPDPS’09). IEEE, 2009.

[47] Q. Yi, K. Seymour, H. You, R. Vuduc, and D. Quinlan, “POET:
Parameterized Optimizations for Empirical Tuning,” in Proceedings of the
21st IEEE International Parallel And Distributed Computing Symposium
(IPDPS’07). IEEE, 2007.

[48] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and
S. Amarasinghe, “Halide: A Language and Compiler for Optimizing
Parallelism, Locality, and Recomputation in Image Processing Pipelines,”
in Proceedings of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’13). ACM, 2013, pp.
519–530.

[49] N. Vasilache, O. Zinenko, T. Theodoridis, P. Goyal, Z. DeVito, W. S.
Moses, S. Verdoolaege, A. Adams, and A. Cohen, “Tensor Compre-
hensions: Framework-Agnostic High-Performance Machine Learning
Abstractions,” CoRR, vol. abs/1802.04730, 2018.

[50] ISO/IEC 14882:2017, International Organization for Standardization,
Dec. 2017.

[51] Threading Building Blocks, Intel. [Online]. Available: https://www.
threadingbuildingblocks.org

[52] R. D. Hornung and J. A. Keasler, “The RAJA Portability Layer: Overview
and Status,” Lawrence Livermore National Lab, Technical Report LLNL-
TR-661403, 2014.

[53] H. C. Edwards, C. R. Trott, and D. Sunderland, “Kokkos: Enabling
manycore performance portability through polymorphic memory access
patterns,” Journal of Parallel and Distributed Computing, vol. 74, no. 12,
pp. 3202–3216, 2014.

[54] K. Farvardin, “atJIT: A just-in-time autotuning compiler for C++.”
[Online]. Available: https://github.com/kavon/atJIT

http://lists.llvm.org/pipermail/llvm-dev/2017-January/108906.html
http://lists.llvm.org/pipermail/llvm-dev/2017-January/108906.html
http://lists.llvm.org/pipermail/llvm-dev/2018-June/123841.html
http://lists.llvm.org/pipermail/llvm-dev/2018-June/123841.html
http://llvm.org/devmtg/2016-11/#talk7
http://llvm.org/devmtg/2018-04/talks.html#Talk_1
https://lists.llvm.org/pipermail/llvm-dev/2018-May/123690.html
https://lists.llvm.org/pipermail/llvm-dev/2018-May/123690.html
https://reviews.llvm.org/D49281
https://hal.inria.fr/tel-01078440
http://pollylabs.org/gsoc2017/Maximal-static-expansion-for-efficient-loop-parallelization-on-GPU.html
http://pollylabs.org/gsoc2017/Maximal-static-expansion-for-efficient-loop-parallelization-on-GPU.html
https://llvm.org/devmtg/2017-10/#talk17
https://github.com/cdl-saarland/rv
https://github.com/cdl-saarland/rv
https://sourceforge.net/projects/open64/
https://sourceforge.net/projects/open64/
https://www.threadingbuildingblocks.org
https://www.threadingbuildingblocks.org
https://github.com/kavon/atJIT

	Motivation
	Pragma Directives in Clang
	Front-End
	Mid-End

	Extending Loop-Transformations Pragmas
	Transformation Order
	Followup-Attributes
	Syntax
	Preprocessor
	Parser
	Semantic Analysis
	Code Generation

	Composibility
	Additional Transformations
	Loop Reversal
	Loop Interchange
	Tiling
	Array Packing

	Polly as Loop-Transformer

	Matrix-Matrix Multiplication
	Effectiveness

	Related Work
	Conclusion
	Acknowledgments

