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Abstract—Direct Cholesky-based solvers are typically used to  scientific computing applications that run on GPUs must be
solve large linear systems where the coefficient matrix is sym- protected by fault tolerant mechanisms. We focus on trahsie

metric positive definite. These solvers offer faster performare  faults that affect the streaming processors (SPs) of the.GPU
in solving such linear systems, compared to other more general

solvers such as LU and QR solvers. In recent days, graphics Fault tolerant (FT) techniques for matrix factorization
processing units (GPUs) have become a popular platform for methods, such as Cholesky factorization, have been dsduss
scientific computing applications, and are increasingly being used in the literature. Most of these techniques are based on the
as major computational units in supercomputers. However, GPUs pioneering work done by Huang et al [10] in providing fault
are susceptible to transient faults caused by events such as alpha tglerance for matrix-matrix multiplication through theeusf
particle strik_es and power fluctuations. As a result, the p_ossibility checksums. For example, Hakkarinen et al [8] discuss and
g‘;eaﬂszgolrnmtﬁif%zepseﬁv ;n%rﬁo?jzien:\?vrg ec?fE:%Jeriofr:Lﬁ)ll{lti:IgI% rg‘;ggs evaluate checksum techniques for the outer-product Ckyles
schemes for the Cholesky factorization method, and study their and right-looking ChoIes}W methods on distributed memory
performance using a direct Cholesky solver in the presence systems for dense matrices. H_owever, they do not evaluate
of faults. We utilize a transient fault injection mechanism for ~ the effectiveness of these techniques on GPUs. Chen et al [3]
NVIDIA GPUs and compare our schemes with a traditional ~ implement and evaluate a checksum FT scheme for Cholesky
checksum fault tolerance technique, and show that our proposed decomposition on MAGMA, a linear algebra library for het-
schemes have superior performance, good error coverage anddo  erogeneous CPU-GPU systems that is designed to work with
overhead. dense matrices. Wu et al [18] propose using row and column
checksums for LU factorization, to protect the factor nuatsi
. INTRODUCTION L, U and the trailing matrix portion during factorization.

Solutions of large linear systems (i.e. where a system Researchers have also proposed FT techniques for solvers

represented by a linear equatidn: = b is solved for the vector that involve sparse linear systems. Loh et al [13] propose

z) are usually obtained by one of two high-level strategies!ightweight invariant checking for the preconditioned eon

the direct method and the iterative (indirect) method.atige ~ Judate gradient (PCG) and biconjugate gradient stabilized
solvers begin with an initial guess( to the )solutiom, and (BICGSTAB) iterative sc_)lvers. Sha“thafam etal[16] depejo
then iteratively make improvements to this solution vedtpr ~checksum-based technique for protecting sparse matriess u
calculating a series of direction and residual vectorse@ir " the PCG iterative solver.
solvers, by contrast, first factorize the matrxinto a product Our work differs from the aforementioned papers. In our
of matrices with a well-defined non-zero structure (e.gveelo  paper, we develop efficient FT schemes for the left-looking
and an upper triangular matrix), and then solve the faatdriz Cholesky factorization method, as well as its supernodal
linear system by forward or backward substitution.Afis  variant, using a different error checking strategy. Tha- lef
symmetric positive definite, then Cholesky factorizatiam®e |ooking Cholesky method and its supernodal variant are used
used to factorized into the productLL”, whereL is a lower  in industry and academia, for example, as linear systenesolv
triangular matrix. This factorization is significantly fasthan  invoked by the ‘backslash’ operator in Matlab. We evaluate o
other matrix factorization methods, such as LU and QR [7]. proposed FT methods on a popular open-source sparse direct
solver, CHOLMOD. Since CHOLMOD only uses the left-
‘Fc')oking variant of Cholesky factorization, for the remaénd
%‘ this paper, we will refer to the “left-looking Cholesky”
ethod as simply the “Cholesky” method, and likewise for
its supernodal variant.

In recent years, graphics processing units (GPUs) have b
come a popular platform for scientific computing applicasp
and are increasingly being used as the main computation
units in supercomputers. This trend is expected to contirsue
the number of computations required by scientific apploceti
approach exascale range [1]. As the minimum feature size of In our evaluation, we utilize a variety of sparse input
transistors decreases, GPUs are becoming more vulnemblernatrices from real applications and use a transient fault
transient faults caused by events such as alpha partidtesstr injection mechanism for NVIDIA GPUs. We show that our
and power fluctuations. To make matters worse, the liketihoo error checking methods have good error coverage and low
of an error increases as more GPU computing nodes are useddeerhead. The contributions of our paper are the following:
meet the increasingly demanding computational requirésnen1) We introduce efficient error checking mechanisms for
of scientific applications. There are concerns that exascalCholesky factorization, as well as its supernodal vari@t.
systems will suffer from very high fault rates [9]. Therefor We evaluate our FT schemes using a sparse direct solver on



a GPU platform, with and without the injection of faults, I1l.  OVERVIEW OF CHOLESKY FACTORIZATION
using matrices from real applicatior®). We use an interrupt-
based transient fault injection mechanism for NVIDIA GPUs.
Our fault injection method can simulate faults that periist
varying durations.

In this section, we first describe the basic algorithm of
the Cholesky factorization method, then explain its supéah
counterpart.

The rest of this paper is organized as follows: Section llA. Cholesky Factorization
provides an overview of the architecture of NVIDIA GPUs, o
while Section 1l provides a brief overview of Cholesky fac-  Cholesky factorization is a frequently used method of fac-
torization and its supernodal counterpart. Section IV jfey  torizing sparse symmetric positive definite matrices [&}isT
justification for the need for fault tolerance in direct sy, ~ @lgorithm calculates the matrix one column per iteration,
Section V covers various fault tolerant techniques for @sky ~ Where A = LLT and L is a lower triangular matrix. During
factorization and Section VI provides details of our fault the kth iteration, thekth column of L is calculated using the
injection mechanism. Section VII explains our experimenta following formula, which utilizes (but doesot modify) the

setup while Section VIII discusses our results. Section [xPreviously computed elements in columhso & — 1 of L.
concludes the paper. Ly, 1, refers to the element of with row and column index%

(i.e. thekth diagonal element of), while L., i refers to
elementsk + 1 to n of the kth column of L. Elementsl to
k — 1 of the kth column are zero and are not computed.
A GPU is a processor that possesses the ability to execute
a large number of threads in parallel. It has a large number
of processing elements, along with a wide memory bus and Ly = \/Ak k= Liak1 LT 0y
fast off-chip memory. The CPU communicates with the GPU ' ’ ' o
through thePCI-Expressnterface [11].

II. OVERVIEW OF GPU ARCHITECTURE

T
Ak:+1:77,,k - Lk+1:n,1:k—1Lk’1;k,1
L i

Litimp =
In this paper, we focus on NVIDIA GPUs that are based
on the Fermi architecture [15], like the GTX 480. The GTX o
480 is capable of performing about 1.3 teraFLOPS and hag When & sparse matrixi is used, only the columns of
15 streaming multiprocessors (SMs). Each SM possesses %rn:lik—l that have non-zero elements in the top row (i.e.
streaming processors, for a total of 480 SPs available. Thi&k.1:x—1) aré required in the sparse matrix-vector multiplica-

GPU also has 16 LD/ST units (for memory operations), 410N-

special function units, a 32,768 32-bit register file, 64KB Algorithm 1 illustrates the sparse Cholesky factorization
of shared memory/L1 cache and 768KB of L2 cache, as welirhe factorization proceeds in two distinct phassgmbolic
as 1.5GB of off-chip memory. factorization and numerical factorization In symbolic fac-

Contemporary NVIDIA GPU families, including those torizatipn, the non-zero structure df is determi_ned. This
based on the Fermi architecture, have support for ECCPNase is necessary because the data structures in sparse mat
protected register files, caches and off-chip memory. Eacffictorization reserve space only for the non-zero elements
kernel that is executed on the GPU consists of a large numb&}°te thatZ will typically have more non-zero elements than
of threads that are grouped into thread blocks. Threads aré’ and this is known a#ll-in. During numerical factorization,
executed in groups of 32 threads knowrvwasps Each thread ©NlY the non-zero elements df are computed.
within a warp executes in sync with the rest of the threads in
that warp, in a SIMD fashion. Figure 1 shows one streamingflgorithm 1 Compute sparse factorizatiohe R"*" = LL”

multiprocessor of the GTX 480. 1. procedure CHOLESKY(A, L)
‘ ‘ 2: do symbolic factorization to find non-zero struc. of L
C—wepsomme ) [ vepsiene ] 3 d=1[00..07T
e e 4 for k=1:ndo
32768 x 32-bt Registr Fle ‘ 5: dgm = Ak:n,k — Lk:n,l:k—ngﬂlzkfl

B S—" 7 ! 6: Ly = Vdy

o [=]=] _ 7 Liyiimge = dﬂilk"

] Ba| Y ———— 5 d=[00 .. 0

[ ][]} /| Lo ] o  end for

B3 10:  retun L

[ ][] 11: end procedure
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- N — | B. Supernodal Cholesky Factorization

‘ e l The supernodal Cholesky method works similarly to the ba-
\ \ sic sparse Cholesky method, except that instead of congputin
\ \ one column ofL per iteration, it computes multiple columns
L . in one iteration. Such a group of columns is referred to as a
Fig. 1: A single SM of the GTX 480. supernode [14]. The columns in each supernode have a similar
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non-zero pattern and this allows the supernodal CholeskZholesky factorization is specified. The GPU is utilizedyonl
method to maximize throughput by operating on dense blocks the numerical factorization phase.

gtglgbg[]naé:ﬁgsésﬁgure 2 shows a samplematrix divided In our work, we use CHOLMOD to evaluate our proposed
P ' FT schemes, and provide fault tolerance for the operatiéns o
— ] CHOLMOD that are performed on the GPU.

B. Effect of Faults on Direct Cholesky Solvers

We ran fault injection experiments to illustrate that it is
3 important to provide fault tolerance for direct solverstthae
the Cholesky method, like CHOLMOD. In these experiments,
we ran the basic CHOLMOD program with no fault tolerance,
using the supernodal Cholesky factorization with the ndék
o matrix from the University of Florida sparse matrix collect
oje o o |0 [5]. Faults are injected into the GPU by flipping a chosen bit
o ofe oo o o position using our fault injection mechanism. We ran a few
— — hundred executions for each bit position to ensure that the
Fig. 2: Supernodes for a sample L matrix. results are statistically significant. We determine whethe
final factorization has errors by computing and comparirgy th
During each iteration, in a process analogous to the compu-2-norm of Az and of LLTz, wherex = [1 1 ... 1]7.
tations performed by the basic sparse Cholesky factooizati A in Fi 3 hat involve th ianif
method, the supernodal Cholesky method first computes the, AS S€eN In Figure 3, errors that involve the more significant
left-looking update of all columns in the current supernode Pt in the result of a thread lead to a vast majority of
similar to line5 of algorithm 1. Then it factorizes the diagonal cases where there are errors in the final factorization of the

block of the current supernode using block Cholesky factoriPUt matrix. The situation is not nearly as bad, but still
ization, which is equivalent to liné of algorithm 1. Finally, unacceptable, for bit flips occurring in the less significhint

similar to line 7 of algorithm 1, the supernodal Cholesky positions: even in this case, there are a significant humber o

method scales the off-diagonal block of the current supno incidents with errors in the final factorization. In other nas,
which involves solving a linear system of equations. when a bit flip error affects some computation in the GPU,

the matrix factorization can be expected to contain siggmific

It is also worth noting that the supernodal Cholesky factor-errors. Even worse, these errors, which result in silena dat
ization modifies only the elements in the current supernodecorruption (SDC), are not apparent to the user because the
Elements computed in previous supernodes are used in thlsystem typically exhibits no trace of abnormal behavioliken
update of these elements, while elements in successive sarrors that cause the system to crash. This shows that fault
pernodes areot modified in any way. We direct the interested tolerance is necessary to protect direct solvers like CHOIM
reader to Davis et al [6] for more details on the supernodafrom faults and errors that can affect the reliability ofesttific
Cholesky factorization. and mathematical applications.

e o o o
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IV. NECESSITY FORFAULT TOLERANCE V. FAULT TOLERANCEMETHODS

In this section, we briefly describe CHOLMOD, a sparse Before we discuss various FT methods for each solver, we

direct solver that we use in our experiments for evaluatimg o first describe some of their invariant properties.
FT schemes. We then illustrate that faults can cause serious ) )
errors in the factorization phase of such a solver, and rttiv A Invariant Properties

matrix A such thatd = LL”, whereL is a lower triangular
A. CHOLMOD matrix. If A is positive definite, then the factorization is
guaranteed to be unique. This can be used as an invariant
roperty at a high level; however, the invariant domst
old between iterations, i.eA # L,LT, where L, is the
currently computed version df at the end of thé&th iteration.
Fortunately, a sub-portion of the matri, can still be used
%o check against. In the case of Cholesky, since only one
column of L is modified and finalized per iteration (i.e. that
column will not be further modified in future iterations),lpn
hat column needs to be checked for errors. This principle
xtends to the supernodal Cholesky factorization, whetg on
one supernode is modified and finalized after each iteration.

CHOLMOD [4] is a popular open-source application for
sparse matrices that is able to perform two major kinds oﬁ
factorizations, which are Cholesky and LDL factorizatidin.
can also solve a specified linear system after factorizaifon
the coefficient matrix is complete. It chooses which of thes
factorizations to use, depending on the characteristichef
input matrix. In most cases, if the input matrikis symmetric
positive definite, CHOLMOD will choose Cholesky factor-
ization. CHOLMOD can also select between the basic an
supernodal versions of Cholesky factorization — this ugual
depends on the size and non-zero patterrdofThe user is
also able to force CHOLMOD to use a particular factorization .
method. CHOLMOD uses the comprgssed column storagg' Fault Detection Methods
format (CCS) for its sparse matrices. CHOLMOD is able to In this subsection, we describe several FT methods for the
take advantage of the resources of a GPU when supernod@holesky factorization.
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Fig. 3: CHOLMOD factorization outcomes for various bit pasis.

1) x Ay vs L LTy Checking: An invariant property holds us to check the elements of the recently computed supernode
for the currently computed supernode in any one iteratioa. Wwith low overhead.
exploit this property and use it as a means for error checking
Let z be a dense row vector apda dense column vector, each
of size n, wheren is the width of A. ThenzAy = zLL"y
and by carefully choosing the elements mofand y, we can
ensure that only the columns d@f that have been computed
up to the current iteration are involved in calculatingL™y.
We pick the elements of the vectors as follows.

The error coverage of this method is effectivelg0%,

and this coverage is similar to the column checksum method

discussed later in this section, because all diagonal eitnoé

L are guaranteed to be non-zero (and positive) and therefore a

columns of the currently computed supernode are accounted

for in the productz LL”y. This means that any error affecting

the elements in any of the columns of the current supernode
Suppose at the end of thgh iteration, we have computed should result in a discrepancy between the valuesA§ and

the columns: to ¢+ b of L. Note that columns 1 to—10of L  zLLTy.

were computed in previous supernodal iterations. et 1 . .
if c<i< 5+ b, ande otherwisg. Leg; = 1 for all z‘.il An error is detected ifeLLTy — x‘éy|/|x‘4y| > 10~¢ for
lzAy| > 1, or if [xLLTy — zAy| > 107° for |zAy| < 1.
Letu =zL. SinceL;,; =0 forall i <j, At this point, it is worth noting that one could simply check
N the invariantzAy and 2LLTy, wherez; = y; = 1 for all
w — Z”L' _ i, onceat the end of the last iteration, after factorization is
! AR complete. While this method would have a very low overhead
=7 of checking, the detection latency is high and this can subst
tially increase the cost of recovery and the overall runfime
the event of errors. Our method offers a good balance between
short detection latency and low checking overhead, and this
overhead is unlikely to be significantly higher than that of
checking the invariant once at the end of factorization.

Sincex; = 0 for j > c+ b, it follows thatu; = 0 for all
j > c+b. Thus, the calculation of only involves columns 1
to c+b of L. Now letv = L”y. This means thatv = zLL"y.
Because:; = 0 for all j > c+0b, we don't require the values of
v; for all j > ¢+ b in order to calculater LL”'y. In addition,
the elementsy; to v._; only involve the rows ofL” that 2) Simplifiedz Ay vs xLL"y Checking: This method is
were computed in previous supernodal iterations. Thesefor very similar to ther Ay vs z LLTy checking method described
it is unnecessary to recalculate these elements; we only neén the previous subsection; however, in this FT method we set
to compute elements, to v.,; and include them with the « such thate; =1 only for i = ¢+ b (0 for all other elements
previously computed values of of z). This sacrifices error coverage for lower overhead in
the checking kernels — unlike thedy vs LLTy checking
method, the productLL”y may not account for all columns
in the current supernode.

With this choice ofr andy, the elements; to u.y;, can be
computed in parallel on the GPU using columnt® ¢ + b of
L, while the elements, to v.4; can likewise be computed
in parallel using the corresponding columns bf(i.e. the Like the previous FT scheme, an error is detected if
corresponding rows of.T). |leLLTy — zAy|/|xAy| > 1076 for |zAy| > 1, or if

. . . LLTy —zA 107° for |zA 1.
The calculation ofc Ay is straightforward Ay needs to be i y—wdyl > 2 Ayl <

computed only once, before the factorization starts. Tleen i 3) Column ChecksumiVu et al [17] propose using column
the current supernodal iteration, the computation: df; only  checksums as a means of checking for errors. They observe
involves thecth to (c+b)th elements ofdy. This method allows that the checksum invariant property holds for outer-pobdu



Cholesky. The checksum invariant property is also true foin the first two columns of thegrd supernode, the relevant
Cholesky factorization. Note that it is not possible to dynp elements ofy are zeroed out in the dot product = xLLy.
modify A to include an extra row and column (for the

checksums) and run this modifietl directly on CHOLMOD, D. Fault Recovery Method

is no longer itiv finite.
becaused is no longer positive definite There are several ways to recover the correct value of the

We implement a checksum scheme similar to the onelements in a supernode, once a fault is detected in some
proposed by Chen et al [3], using only one column checksuniteration. The most efficient method would be to use the
each for A and L, and compare this scheme against ourequations for Cholesky factorization, as shown in sectlon |
proposed FT schemes. Like Chen’s proposed scheme, tif& to recover each column in the erroneous supernode,refarti
column checksums are implemented as separate data sesictufrom the left-most column in that supernode. Algorithm 2
(row vectors) and are computed separately from the maiflustrates this process, and uses théy vs zLL"y checking
Cholesky factorization process. Lét,11., and L, .1 1., be  method. A major benefit of this approach is that it does
the column checksums for and L respectively. Thekth ~ not require additional memory to store checkpoints and re-
element of L, 11 1., can be computed using the following execution of the current iteration is not necessary.
formula. L, refers to thekth element of the column

Other methods of recovery include taking checkpoints
checksum vector for, wherel < k£ < n. y 9 b

for L each iteration and re-executing the iteration in which
errors were detected, as well as simply restarting the Ghple
Ani1k — Lov1ik—1 LT 14y factorization upon detection of a fault.

Ly

Ln+1,k: -

Algorithm 2 A FT procedure for supernodal Cholesky factor-
ization
1: procedure FT SUPERNODAL CHOLESKY(A, L)
do symbolic factorization to find non-zero struc. of L
for each supernode of L do
compute elements in supernogle
performzAy vs xLLTy checking:
¢ = index of first column of supernode
b = no. of columns in supernode
z=00..01..10...0] (xz; =1, c<i<c+VD)
y=[11..17 (y; =1 for all i)
compute and compareAy with xLLTy
if errors detectedhen
recover each column of supernode
d=1[00 ..07T
for k=c:c+0bdo

The column checksums of can be computed in a similar
fashion and this can be done before factorization begins.
During each supernodal iteration, we compute the column ?
checksums for columnsg to ¢ + b of L, where columnse :
to ¢+ b are the columns in the currently computed supernode. &
Note that thekth checksum requires all previously computed
checksum elements, i.el, 1 1.4,—1. This means that the
column checksums have to be computed sequentially, and this”
results in significant overhead. To check for errors, we sum 8:
up the elements for each columnto ¢ + b of the current :
supernode ofL, (this can be done in parallel) and compare 10
the sum of a columnolSum, against its respective column
checksum('olChecksum. Like thex Ay vs x LL"y checking
method, the error coverage of this FT method is expectedL3
to be close t0100%. In this scheme, an error is detected 123

) _ T
if |ColChecksum — ColSum|/|ColChecksum| > 10~ for 15: dien = Aken e = L1k -1 L 151
|ColChecksum| > 1, or if |ColChecksum — ColSum/| > 16: Liy = \/ﬁd
10=¢ for |ColChecksum| < 1. 17: Liyiimp, = “prin
18: d=1[00 .. O]T
C. Coverage of Fault Detection Methods 19: end for

20: end if
Figure 4(a) illustrates which elements of the sample ma-,;. end for

trix L are computed and finalized during iterati@nof the o5 yaturn I
supernodal Cholesky factorization method. Our definitiba o 55. ang procedure
“finalized” element is one that was computed in the current
iteration of the Cholesky factorization, and is not modified
further in subsequent iterations. Figure 4(b) shows theeles
of L that are conclusively or definitively checked by the
xAy vs xLLTy checking method and the column checksum
scheme, during the third supernodal iteration. Both ofeHeb
methods are able to check all elements in 3n& supernode.

As we mentioned previously, the supernodal left-looking
Cholesky method has a nice property in which all elements of
a particular supernode are computed in one iteration and no
other elements are updated. However, CHOLMOD does access
and modify other metadata structures during factorizatom
these data structures would also need to be checkpointed ord

Similarly, Figure 4(c) shows the elementslothat are con- to successfully recover from an error. For this reason, we
clusively checked by the simplifiedAy vs L L™y checking instead choose to restart the numerical factorization wdren
scheme in the same iteration. Note that in this case, thevfiosst error is detected, so as to avoid the significant overhead of
columns of supernoda cannot be guaranteed to be checked.checkpointing all of these data structures every iteratiouar
This is because the elements to the left of the diagonal élemechoice of recovery only requires a one-time checkpoint ef th
in the3rd column of supernod, i.e. elements in the same row initial clean version ofL. While the overhead of recovery will
as this diagonal element, might possibly be computed zerodse high, we justify this choice by observing that the ocaucee
(the diagonal element is guaranteed to be non-zero). As af an error is generally rare, and it is expected that regover
result, even though = L™y does take into account elements will not be necessary most of the time.



E. Properties for Fault Tolerance Schemes FT schemes without fault injection and performance of FT

.Ischemes with fault injection. We chooSesparse symmetric
ositive definite real matrices from the University of Ftai

parse matrix collection [5] that represent a variety ofedif

nt applications, as shown in Table Il. We executed several

e Correctness The FT method checks all elements that hundred runs for each matrix, for each category.
are computed and finalized during the current iteration

In this section, we list three desirable properties that F
schemes should possess, and briefly discuss how well the thrg
FT methods described in section V-B meet these requirementg

(the scheme does not need to check any element that TABLE II: Input matrices used in experiments

is not computed or finalized). All three FT schemes e Width | Non-zer6es | Application | Faul Rale ©
SatISfy the correctness requirement. nasa4704| 4704 104756 structural 0.2
e Completeness The FT method eventually checks all afiol | 8205 | 128567 acoustics 03
elements that are computed, by the end of factorization|——2 9801 87025 2D/3D 05
_ computed, by bloweybq | 10001 | 49999 materials 02
of the input matrix. In this case, only theAdy vs besstki7 | 10974 428650 Structural 1

xLL"y checking method and the column checksum
scheme meet the requirements of the “completeness” For those experiments that perform fault injection, we
property adequately. The simplifieddy vs zLLTy inject faults into the kernels that perform the basic linear
checking method cannot guarantee that all computedlgebra operations in the numerical factorization phase of
elements are eventually checked, and so does not hav@HOLMOD. We set the active duration of a fault t600us

full error coverage. and the fault rate according to the input matrix as shown in

) . . Table Il. We measure the average time needed for factasizati

* ![_haéenocm[ lgzrr:grmot::?:rug t';[)etrﬁgorg)?nihﬁ;:rllatﬂsee’e:rrgrr?sof the input matrix. We compare the factorization time foy an
actu%lly detected by the FT metﬁod if it is detected in"" with the correspondmg fgctqnzatmn time for CHQLMOD
' with no FT. In each fault injection experiment, we pick one

the first place. Here, all three FT sch_eme$ are able t?andom SP of a randomly chosen SM and we randomly choose
detect errors by the end of the same iteration in which

. L T a bit to flip, uniformly distributed from bit numbes3 to 56,
émiﬁﬁggu&eqﬁgg\é%ésthfms I}’?;lF\)/lem?lﬁlAeyrr\(l)sr g(vae rayge in the event a fault is activated. For evaluation purposes, w
" chooseb in the CHOLMOD solver such that = [1 1 ... 1]7
in the linear systemix = b that is to be solved. We treat any
VI FAULT INJECTIONMECHANISM run in which [|[LL"z — b||2/||b]]2 > 105 as erroneous. As
In this paper, we only consider transient hardware faultgnentioned earlier, we choose to restart the factorizatiomf
that persist for a certain length of time, which affect thethe beginning, in the event that an error is detected in some
processing elements of the GPU and lead to SDC. We considégeration.
faults that occur in the SP cores during execution, and allow
for the possibility that corrupted results can be written to VIIl. RESULTS
memory by threads running on faulty cores. Our fault injacti
mechanism is similar to that used by other researchers [2A. Performance of FT Schemes in the Absence of Faults

[12], [13]. It uses CPU interrupt-based timers to simulate t Figure 5 compares the various runtimes of each FT scheme

aS(g“c/:?);jeuE\?\}iﬁ?nO;a g?t?csLljle:rt gih%;t.fgrc]%1|?lfnqesci:§ﬁt ?F(Fhlgell’:au with respect to the runtime of the CHOLMOD implementation
p | ) with no FT, in the absence of faults. This measures the over-

arrivals are assumed to form a Poisson process with a uselaad of error checking alone. As shown in figure 5,k vs

specified rate. All threads that happen to be running on th%LLTy checking scheme and the simplifiedly vs =LLTy

gg(r)riert]engmgeig (;T)?] efabultﬂ|is '?rjlecgedrg\ggtg?r\r/l?nézegitrﬁ]‘c‘%tgchecking scheme have significantly lower overhead than the
ptea. y Tipping a p column checksum scheme. For each matrix, the runtime of

?hélr;aballtjgouble-preusmn floating point resuit of each ofsBo simplifiedz Ay vs 2L L™y checking scheme is always less
' than the runtime of the Ay vs «tLL”y checking scheme (but
by only a small margin), while the column checksum scheme
VIl EXPERIMENTAL METHODOLOGY always has the largest overhead. The overhead of the column
We run all experiments using a GPU compute cluster, usinghecksum scheme varies from 39.9% (nasa4704) to 53.0%

a single node and one of its four GTX 480 GPUs. Table | show$aft01). By contrast, the overhead of our proposed FT method

the specifications of one such node. the zAy vs 2LL"y checking scheme, ranges from 11.3%
(bloweybq) to 17.8% (fv2). Our other proposed FT method,
TABLE I: Specifications of a compute node the simplifiedzAy vs 2 LL"y checking scheme, has similar
overhead. Therefore, thedy vs LL™y checking scheme and
e — Egyf;?z%og%ns — Quazmity the simplifiedz Ay vs xLLTy checking scheme both have low _
75GB DDRS RAM - overhead; on the other hand, the column checksum scheme is
NVIDIA GTX 480 W/ 1.5GB VRAM ! not as efficient.
Western Digital RE4 2TB HDD 1

It is also interesting to note that the number of non-zero
Each experiment runs an instance of CHOLMOD thatelements in the input matrix does not correlate with theinuat

is set to the supernodal Cholesky factorization method. Wéor factorization. For example, nasa4704 and aft01 botle hav

perform experiments in two main categories: performance omore non-zero elements than fv2, but fv2 requires a longer
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Fig. 4: Elements of the sample L matrix that are computed dmsatled in the third iteration
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Matrix

Fig. 5: Performance of various FT schemes with no fault iijec

factorization time than either nasa4704 or aftOl1. It is flidss varies considerably between the various FT schemes, becaus
that factorization performance is strongly dependent an ththe overhead depends strongly on which iteration the errors
non-zero pattern of the input matrix. occurred: an error occurring in an earlier iteration wiltum

These results show that our proposed schemes for thIess overhead than one occurring during a later iteratitve. T
at our prop erhead of the checks themselves, however, is small.
supernodal Cholesky factorization can offer good perforcea

compared to traditional checksum schemes. At this point, we would like to reiterate that all three FT
schemes satisfy the “correctness” property. However, trdy
B. Performance of FT Schemes with Fault Injection xAy vs xLLTy checking method and the column checksum

scheme meet the requirements of the “completeness” pyopert

Figure 6(a) shows the error coverage of the FT SChemeéonverser, the simplified:Ay vs zLLTy scheme does not

when faults are injected, while figure 6(b) shows the run-pqqress the requirements of the completeness metric to a
time of these schemes, compared to the runtime of the ba

] %%tisfactory degree, since it can only check some of the
CHOLMOD with no fault tolerance (leftmost column), only gjements that were finalized in a particular iteration. Aliee

for cases where the errors were detec;ted and corrected. This schemes have low latency, in the sense that each of the

measures the overhead of error checking and recovery. 00 schemes can potentially detect errors by the end of the
From figure 6(a), one can see that both ey vs zLLTy  Same iteration in which they occur. In terms of efficiencg th

checking scheme and the column checksum scheme havedy vs zLL"y checking scheme and the simplifiediy vs

excellent error detection coverage, with practically atoes ~=LL”y checking scheme both perform well, while the col

getting detected, thus satisfying the completeness remeint,  checksum scheme is considerably less efficient.

as we expect. However, the simplifiediy vs xLLTy check-

ing scheme suffers from poorer coverage (abdi%) due to IX. CONCLUSION

the fact that it does not check all elements that are computed

during any supernodal iteration. This correlates with autier

assertion that the simplifiedAy vs 2L L”y checking scheme

fails to meet the completeness requirement adequately.

In this paper, we implemented and analyzed two FT
schemes for Cholesky factorization. We compared these
schemes against a traditional checksum-based scheme using
a direct Cholesky solver and show that our checking methods
As can be seen in figure 6(b), the overhead of all three Fhave relatively low overhead and good error coverage. In par
schemes go up when recovery was required. The overhead alSoular, we recommend theAy vs 2 LL"y checking scheme,
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Fig. 6: Performance of various FT schemes with fault inf@cti

it offers the best of both worlds: excellent error coverag [9]

and low error checking overhead.
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