<span class="var-sub_title">Improving the I/O Performance and Memory Usage of the Xolotl Cluster Dynamics Simulator</span> SC18 Proceedings

The International Conference for High Performance Computing, Networking, Storage, and Analysis

Improving the I/O Performance and Memory Usage of the Xolotl Cluster Dynamics Simulator

Authors: Philip C. Roth (Oak Ridge National Laboratory), Sophie Blondel (University of Tennessee), David E. Bernholdt (Oak Ridge National Laboratory), Brian D. Wirth (University of Tennessee)

Abstract: Xolotl is a cluster dynamics simulator used to predict gas bubble evolution in solids. It is currently being used to simulate bubble formation in the plasma-facing surface within fusion reactors and the nuclear fuel used in fission reactors. After observing performance problems in coupled-code simulations of fusion reactors, we used Xolotl's built-in performance data collection infrastructure and an external profiling tool to identify inefficiencies when writing Xolotl's two types of checkpoint files. We changed the code to use true parallel writes via the HDF5 data management library, resulting in a code that is approximately 57x faster when writing the program's main checkpoint file at the scale used in the coupled-code simulations, and that exhibits less performance variability due to external system activity. We also identified and addressed a memory usage problem that reduced Xolotl peak memory usage by approximately 88% per compute node.

Best Poster Finalist (BP): no

Poster: pdf
Poster summary: PDF
Reproducibility Description Appendix: PDF

Back to Poster Archive Listing