Reproducibility as Side Effect

Shu Wang, Zhuo Zhen,

Jason Anderson
University of Chicago
Chicago, Illinois
{shuwang,zhenz,jasonanderson}@uchicago.edu

ABSTRACT

The ability to keep records and reproduce experiments is a criti-
cal element of the scientific method for any discipline. However,
the recording and publishing of research artifacts that allow to
reproduce and directly compare against existing research continue
to be a challenge. In this paper, we propose an experiment précis
framework that helps the experiment repeatability. Guided by the
framework, we implement a prototype tool called ReGen which
generates repeatable experiment scripts that can be used or shared
along with a detailed experiment description automatically. Evalu-
ation shows that ReGen is effective in reducing the researcher’s
efforts of creating a repeatable experiment in a real setting.

1 INTRODUCTION

The ability to keep records and reproduce experiments is a critical
element of the scientific method for any discipline. However, the
recording and publishing of research artifacts that allow to repro-
duce and directly compare against existing research continues to
be a challenge. Computer science research is particularly difficult
to reproduce when compared to other disciplines [1]. Foremost, this
is partly due to cultural factors, e.g., the accepted medium of re-
search sharing, the 8-page paper, is the primary consideration for
paper acceptance and contribution evaluation. Yet, the paper itself
is no longer suited to accommodate the level of detail necessary to
communicate complex results, especially for applied computer sci-
ence research, e.g. system, network, and database research. Secondly,
researchers lack incentives for repeatable experiments, since there
is a strong emphasis placed on publication of only novel and only
positive results. Finally, it is extremely difficult to keep track of,
communicate, and ultimately provide mechanisms to repeat and
expand on existing research.

In recent years there has been an increasing recognition that
being able to reproduce, conclusively compare, and directly expand
the research of others is the best and fastest way to make progress
in scientific and technological fields. This led to a cultural change:
conferences, journal publishers, and standards organizations are
beginning to encourage providing descriptions of how results can
be reproduced. Yet, creating reproducible experiments today is still
time-consuming: a scientist needs to take detailed notes not always
knowing which specific detail will prove important and invest in
streamlining their experiments, which often requires extra effort
at a time when the amortization of this effort may be uncertain.
Because making research repeatable is seen as a costly operation,
many scientists see repeatability as a hard choice between investing
the time in repeatability or advancing their scientific agenda.

Operating within a testbed creates a great opportunity to help
resolve this dilemma as much of the information that is required
is already recorded by the testbed in great detail: the Chameleon

Kate Keahey
University of Chicago, Argonne National Laboratory
Chicago, Illinois
keahey@anl.gov
Chameleon
testbed
services -
Instance
monitoring
Experiment
Infrastructure PreCis
monitoring
° ®
User
events Store and share Jupyter

Figure 1: Experiment précis framework

testbed records detailed description of hardware components, and
is versioned whenever any of this information changes and allows
users to create appliance versions. Furthermore, the specific re-
sources allocated to the user, the appliance/image deployed, the
monitoring of various qualities, are all recorded as part of logging
activity on testbed services. In addition, most testbeds provide mon-
itoring systems that the user can leverage to record information
about experiment-specific metrics or even differentiation markers
between experiments. Consolidating this already gathered infor-
mation and filtering it for the user allows us thus to automatically
generate a detailed and accurate description of all the actions taken
to create an experimental environment and provide it to the user.

In this paper, we propose the experiment précis framework that
improves the experiment repeatability. We implement a prototype
tool, which generates repeatable experiment scripts that can be
used or shared along with a detailed experiment description auto-
matically. We explore the possibility of experiment repeatability as
a side-effect in the Chameleon testbed.

2 EXPERIMENT PRECIS

A Chameleon experiment précis represents exactly this informa-
tion about user experiments in a form that can be consumed in
multiple ways: from providing an experiment record, to its analy-
sis, to repeating the experiment, potentially with variations. In a
sense, an experiment précis is the equivalent of a Linux "history”
command: it reflects the actions the user took when interacting
with the system, it can be edited or processed to e.g., simplify the
workflow it represents, and it can be streamed to a file and turned
into a script repeating those actions that can be easily shared with
others. Similarly, an experiment précis captures actions carried out
in a significantly more complex environment that can be adapted
in multiple ways (Fig . 1):
e Experiment description: an experiment précis can be used
to simply as an informational tool for the user to recall or



- (Fnemeleon Testbed ‘\'\ . ReGen Tool R

i

Events Database
1. lease_start
2. Instance_start

Experiment
% 1. Create a lease
2. Lunch instances

User | 3 Add networks

Events

P

: ‘ Events

RabbitMQ

Listener
English
Description

Vi
]
i

i

Openstack
Commandline

/
\

Figure 2: ReGen tool

share with others their experiment description; this can be
done both via a machine readable format or by generating
a description of the experiment in English such as can be
pasted directly into the relevant sections of a scientific paper.

e Experiment analysis: an experiment précis record, espe-
cially one containing the monitoring information, can be
mined for correlation between various factors that may in-
fluence the experiment in non-intuitive ways.

¢ Real-time experiment monitoring: the experiment infor-
mation can be imported to tools such as Jupyter to facilitate
both analysis and management or the experiment.

e Repeating an experiment: a précis, in conjunction with
testbed services, can be re-enacted in either the directly
recorded or modified form, e.g., by substituting the appliance
that was used or making a change to the type of resources.

e Sharing with others: just like a script derived from the his-
tory, a précis can be easily shared with others - in particular
in a form standardized to work between two testbeds.

3 REGEN TOOL

ReGen is a prototype tool for experiment précis framework. As
showing in Figure 2, ReGen aims at (1) collecting user events
by attaching a listener to RabbitMQ, (2) consolidating them into
databases, and (3) reconstructing an OpenStack command-line
script along with detailed experiment description.

For the listener, we modify the configuration of OpenStack ser-
vices used by Chameleon, so that it can emit detailed events infor-
mation. All the event notification messages are bound to our ReGen
listener. These events are imported into the database, and analyzed
by ReGen . ReGen generates an OpenStack command-line script so
that the user can easily repeat their experiment, keeping detailed
records, and sharing the experiment with others.

Yet, ReGen is still facing at least the following two challenges:

e Event Mapping: It is important to filter out some unrelat-
ed/trivial events, and map the remaining into a machine-
readable script.

e Parameter Filling: The script not only contains the general
command-line operation, but also requires huge amount of
configuration parameters, e.g. a specific instance id need to

Description

Experiment 1 . Analyzed by ReGen
(Default Setting) | _Emit Chameleon Events Y u
- (Experiment Setup)
ez g @

Results

Experiment Précis
(Default Setting)

Combine
Results

Used Memory(MB)
A ermeny (i
B2 s
8 8 8
-
=
=
i

[~}

Modified by User
@

0 200 400 600 800 1000
Request Index

Experiment 2
(SmartConf)

Generate a similar experiment

Experiment Précis
(SmartConf Enabled)

@

Figure 3: Evaluation of ReGen

know before assigning the IP address to it. Some of them
are static determined by default or experiment requirement,
some of them are dynamic generated. How to automatically
identify different type and fill with corresponding value are
still challenging.

4 EVALUATION

We evaluate ReGen in the DevStack environment (emulated actual
Chameleon Testbed). A benchmark from Wang et al. [2] is used
(This benchmark is about the default RPC queue size in HBase being
too large, potentially causing an out of memory error). The goal is
to show how effective our tool is for reproducing the experiment.

As shown in Figure. 3, the experimenter starts with an experi-
ment using the default queue size. Under this default setting, the
HBase Server will go out of memory very soon. At the same time,
the experiment setup events are collected as a side effect. This re-
quires no intervention from the experimenter. These events will be
analyzed by ReGen .

ReGen summarizes the experiment environment, formalizes a
standardized description, including both hardware (e.g. cpu, mem-
ory) and software information (e.g. image id), which could be di-
rectly incorporated into a scientific paper.

ReGen also generates an experiment précis for original experi-
ment. The experimenter could easily modify it to invoke the same
or similar experiment, like enabling SmartConf framework so that
queue size could be adjusted automatically and avoiding out of
memory error. Finally, the experimenter could combine results from
these two experiments, and generate overall comparison between
them.

5 CONCLUSIONS

In this paper, we propose an experiment précis framework for re-
peatable experiment, which eases the researcher’s burden when
preparing a repeatable experiment. We demonstrated that it is possi-
ble to capture a major part of experiment information automatically
and faithfully as a side effect on the Chameleon testbed. We are
able to use the captured information to repeat the experiment with
controlled modifications. This also allows us to easily share our
experiment with others.



REFERENCES Configurations. In Proceedings of the Twenty-Third International Conference on
Architectural Support for Programming Languages and Operating Systems. ACM,

[1] Christian Collberg and Todd A Proebsting. 2016. Repeatability in computer 154-168

systems research. Commun. ACM 59, 3 (2016), 62-69.
[2] ShuWang, ChiLi, Henry Hoffmann, Shan Lu, William Sentosa, and Achmad Imam
Kistijantoro. 2018. Understanding and Auto-Adjusting Performance-Sensitive



	Abstract
	1 Introduction
	2 Experiment Précis
	3 ReGen Tool
	4 Evaluation
	5 Conclusions
	References

