
WHICH ARCHITECTURE IS BETTER SUITED FOR MATRIX-FREE FINITE-ELEMENT ALGORITHMS: INTEL SKYLAKE OR NVIDIA VOLTA?
MARTIN KRONBICHLER, MOMME ALLALEN, MARTIN OHLERICH, WOLFGANG A. WALL

KRONBICHLER@LNM.MW.TUM.DE

TECHNICAL UNIVERSITY OF MUNICH, LEIBNIZ SUPERCOMPUTING CENTRE

MATRIX-FREE ALGORITHM LAYOUT
Matrix-free algorithm in finite element programs ex-
changes matrix-vector product in matrix-based
scheme A =

∑
K∈{cells}

PT
KAKPK (with assembly)

v = Au (sparse mat-vec within iterative solver)

by evaluation of integrals within the iterative solver:

v =
∑

K∈{cells}

PT
KAK (PKu)

Matrix-free algorithm:

• v = 0

• loop over cells

(i) Extract local vector values on cell: u(K) =
PKu

(ii) Apply operation locally on cell: v (K) =
A(K)u(K) (without forming A(K))

(iii) Sum results from (ii) into the global solution
vector: v = v + PT

Kv
(K)

SUMMARY

• Performance evaluation of matrix-free finite element kernels from deal.II library (www.dealii.org) on Intel Broadwell, Intel KNL, Intel Skylake, NVIDIA Pascal,
and NVIDIA Volta

• Analysis of matrix-free operator evaluation as proxy for application performance in fluid dynamics [2]

• Volta 1.6× faster than Pascal; Volta 2×–3× faster than Skylake for large sizes; from L2/L3 cache, Skylake reaches similar performance as Volta

• For large problem sizes, CPUs suffer from relatively low memory bandwidth (Skylake theoretical performance: 255 GB/s, Volta theoretical performance: 900 GB/s)

• KNL not competitive due to mixture of heavy arithmetic in sum factorization and memory transfer in quadrature and missing hardware prefetching; only 200 GB/s

• NVLink communication on multiple GPUs with MPI-like setup: explicitly send ghost data, overlapped with computations→ good in weak scaling setup, but difficult to
maintain low latency of single-GPU case→ further research necessary→ CPU advantageous in latency-sensitive regime

Application background: Simulation of 3D Taylor–Green vortex at Re = 1600, flow
field visualized by Q-criterion [2]MATRIX-FREE CELL OPERATION FOR LAPLACIAN

• Weak form: (∇ϕi ,∇uh)Ω represented in matrix-free way

• Approximation on each cell K with Gaussian quadrature on qd points in d dimensions:

(∇ϕi ,∇uh)K =

∫
Kunit

(
J (K)(ξ)−T∇ξϕ(ξ)

)
·
(
J (K)(ξ)−Tu

(K)
h (ξ)

)
det(J (K)(ξ)) dξ

≈
qd∑
r=1

(
J (K)(ξr )

−T∇ϕi (ξr )
)
·
(
J (K)(ξ)−Tu

(K)
h (ξr )

)
det(J (K)(ξr ))wr

• Efficient computation of integrals: Sum factorization on quadrilaterals/hexahedra through deal.II
finite element library www.dealii.org [1, 4, 6, 7]

• Sum factorization used for interpolation kernels ∇u(K)
h (ξr ) =

∑(p+1)d

j=1 ∇ϕj(ξr )u
(K)
j and summation over

quadrature points in r

• Example for evaluation of
∂u

∂ξ
in all quadrature points, given node values uK with interpolation matrix

Dξ ⊗ Sη done by matrix-matrix product
Sηmat(uK )Dξ

Vector values uK on nodes
∂uh

∂ξ
on quadrature points

Dξ Sη

HARDWARE SETUP
• Intel Skylake: 2-socket Xeon Scalable Platinum 8168, 2×24 cores at 2.5 GHz (max AVX-512 frequency)

• Intel Broadwell: 2-socket Xeon E5-2698 v4, 2×20 cores at 2.2 GHz

• Intel KNL: Xeon Phi 7210, 64 cores at 1.1 GHz (max AVX-512 frequency)

• NVIDIA Volta V100

• NVIDIA Pascal P100

NODE-LEVEL PERFORMANCE
• Analyze the performance on kernel similar to CEED bake-off problems [3]

• Setup: 16 to 106 mesh cells, deformed geometry

• MPI parallelization of CPU codes, parallel CUDA kernels on GPUs according to [8]:

– Loop over cells parallelized, use atomics to avoid race conditions

– One thread per local DoF on elements

• Choose polynomial degree p, Gaussian quadrature with q = p+1 quadrature points (similar to CEED BP5
problems, but full Gaussian quadrature rather than Gauss–Lobatto)

• Merged coefficient tensor J−1J−Tdet(J )wq stored in each quadrature point, i.e., 6× 8 bytes per quadra-
ture point

• Measure performance of matrix-vector product only (BK5), repeat 100 times

• CPU gains speed more quickly on
small problem sizes, reaching ex-
cellent performance for 105 DoFs

• Skylake 2× faster than Volta for
300k DoFs

• Up to 106 DoFs, all data fits into
L2/L3 caches on Broadwell and
Skylake→ high throughput

• Skylake twice as fast as Broadwell
from caches due to AVX-512 (im-
plementation uses 8-wide vector-
ization over several elements ac-
cording to [5]) and more cores (48
vs 40)

• CPU performance drops signifi-
cantly once access must go to main
memory

• Measured performance at 50 mil-
lion DoFs and p = 4: 115 GB/s
on Broadwell, 220 GB/s on Skylake,
690 GB/s on Volta

• Volta more than 2× faster than
Skylake at large sizes

• Skylake from cache reaches ap-
proximately same throughput as
Volta (served from high-bandwidth
memory)

• Volta consistently 1.6 times faster
than Pascal on most benchmarks

• KNL not really competitive – cannot
fully exploit high-bandwidth mem-
ory due to mixture of arithmetic
heavy parts and memory transfer
(missing prefetching)

103 104 105 106 107 108
0

1 · 109

2 · 109

3 · 109

4 · 109

Number of DoFs

de
gr

ee
s

of
fre

ed
om

pe
rs

ec
on

d

Polynomial degree p = 4, q = 5 quadrature points

V100 P100 KNL Skylake Broadwell

103 104 105 106 107 108
0

1 · 109

2 · 109

3 · 109

4 · 109

Number of DoFs

de
gr

ee
s

of
fre

ed
om

pe
rs

ec
on

d

Polynomial degree p = 7, q = 8 quadrature points

THROUGHPUT VERSUS LATENCY
Analysis of latency of the various architectures: Plot throughput over the absolute time for matrix-vector product

• Skylake and Broadwell reach
good throughput down to 3 · 10−5

seconds

• Volta and Pascal only efficient
above 5 · 10−4 seconds

• CPU architectures benefit from
fast caches

• CPU architectures more
promising for strong scal-
ing of applications with multigrid
components where time per oper-
ator evaluation for small sizes is
critical

• KNL worst architecture in this met-
ric and hampered due to

– MPI-only parallelization

– many relatively slow cores

– vectorization over several
cells

10−5 10−4 10−3 10−2 10−1
0

1 · 109

2 · 109

3 · 109

4 · 109

Time operator evaluation [seconds]

de
gr

ee
s

of
fre

ed
om

pe
rs

ec
on

d

Polynomial degree p = 4, q = 5 quadrature points

V100 P100 KNL Skylake Broadwell

MULTIGRID APPLICATION PERFORMANCE
• Laplacian with variable coefficient a(x) =

1 + 106
∏d

e=1 cos(2πxe + 0.1e), analytic solution
u(x) = sin (π(x + y))

• 3D shell geometry, high-order curved elements

• Conjugate gradient iterative solver precon-
ditioned by geometric multigrid based on
deal.II infrastructure [7, 8], ∼ 15 iterations

• Polynomial Chebyshev smoother of degree 5
(=5 mat-vec) for pre- and post-smoothing

• Multigrid cycle done in single precision, outer
CG in double precision → leverages 2× higher
throughput of float

• Multigrid solver is central component in incom-
pressible flow solver according to [2]

1 2 3 4 5 6 7
0

2M

4M

6M

8M

10M

12M

element degree

de
gr

ee
s

of
fre

ed
om

pe
rs

ec
on

d

V100 P100
64C KNL 2 × 48C Skylake
2 × 20C Broadwell

• Matrix-free evaluation several times faster than matrix-based algorithms [7]

• Due to the deformed geometry, this test case is almost completely memory bandwidth bound

• NVIDIA Volta V100 reaches up to 650 GB/s, Skylake 220 GB/s

• Coarser grid levels faster on CPUs than on KNL and V100/P100

MULTI-GPU ANALYSIS ON NVIDIA DGX-1
• Parallelization to multiple GPUs on NVIDIA DGX-1 (for P100 and V100)

• MPI-like setup with separate domains for each GPU, data exchange between GPUs via NVLink/NVSwitch
protocol with cudaMemcpyPeerAsync

• Topology of NVLink reflected in domain decomposition→ large data exchange between GPUs with direct
link

Evaluation of throughput for Laplacian with storage of J and det(J ) in each quadrature point on 1–8 GPUs

104 105 106 107 108

107

108

109

1010

Number of DoFs

de
gr

ee
s

of
fre

ed
om

pe
rs

ec
on

d

p = 4, q = 5, NVIDIA Volta

10−4 10−3 10−2

108

109

1010

Time operator evaluation [seconds]

de
gr

ee
s

of
fre

ed
om

pe
rs

ec
on

d

p = 4, q = 5, NVIDIA Volta

1 GPU 2 GPUs 4 GPUs 8 GPUs

104 105 106 107 108

108

109

1010

Number of DoFs

de
gr

ee
s

of
fre

ed
om

pe
rs

ec
on

d

p = 7, q = 8, NVIDIA Volta

10−4 10−3 10−2

108

109

1010

Time operator evaluation [seconds]

de
gr

ee
s

of
fre

ed
om

pe
rs

ec
on

d

p = 7, q = 8, NVIDIA Volta

• Multi-GPU setup provides good speedup for large problem sizes

• Latency severely impacted in multi-GPU setup: loss of around a factor of 10 when going from 1 to 8 GPUs,
cannot go below 10−3s on 8 GPUs!

• Almost ideal weak scaling for 10m DoFs per
GPU

• Bad scaling for 1m DoFs per GPU

• Cross-GPU communication is a serious
bottleneck for latency-sensitive applications

• In current implementation, multi-GPU scales
worse than multi-node CPU codes presented
in [7] which can reach 2 · 10−4s

• Further research necessary to speed up multi-
GPU case

– Detailed multi-GPU performance analysis
outstanding

– Is there potential for more overlap of com-
munication and computation?

– Do we need to merge operations at
a higher level between several matrix-
vector products?

1 2 4 8
0

1 · 109

2 · 109

3 · 109

Number of GPUs

de
gr

ee
s

of
fre

ed
om

pe
rs

ec
on

d
pe

rG
P

U

Weak scaling p = 4, q = 5

V100, 10m DoFs/GPU
V100, 1m DoFs/GPU
P100, 10m DoFs/GPU
P100, 1m DoFs/GPU

REFERENCES
[1] G. Alzetta, D. Arndt, W. Bangerth, V. Boddu, B. Brands, D. Davydov, R. Gassmoeller, T. Heister, L. Heltai, K. Kormann, M. Kron-

bichler, M. Maier, J.-P. Pelteret, B. Turcksin, D. Wells (2018), The deal.II library, version 9.0. Journal of Numerical Mathematics.
doi:10.1515/jnma-2018-0054.

[2] N. Fehn, W. A. Wall, M. Kronbichler (2018), Efficiency of high-performance discontinuous Galerkin spectral element methods for under-
resolved turbulent incompressible flows. International Journal for Numerical Methods in Fluids 88(1):32–54. doi:10.1002/fld.4511.

[3] P. Fischer, Tz. Kolev, M. Min, V. Dobrev, et al. (2018), CEED bake-off problems for matrix-free operator evaluation,
http://ceed.exascaleproject.org/bps/.

[4] M. Kronbichler, K. Kormann (2012), A generic interface for parallel cell-based finite element operator application, Computers & Fluids
63:135–147. doi:10.1016/j.compfluid.2012.04.012.

[5] M. Kronbichler, K. Kormann (2017), Fast matrix-free evaluation of discontinuous Galerkin finite element operators, arXiv preprint
arXiv:1711.03590.

[6] M. Kronbichler, K. Kormann, I. Pasichnyk, M. Allalen (2017), Fast Matrix-Free Discontinuous Galerkin Kernels on Modern Computer
Architectures, in J. Kunkel , R. Yokota, P. Balaji, D. Keyes (eds): High Performance Computing. ISC 2017. Lecture Notes in Computer
Science, vol 10266, pp. 237–255, doi:10.1007/978-3-319-58667-0_13.

[7] M. Kronbichler, W. A. Wall (2018), A performance comparison of continuous and discontinuous Galerkin methods with fast multigrid
solvers, SIAM J. Sci. Comput., in press, doi:10.1137/16M110455X.

[8] K. Ljungkvist, M. Kronbichler (2017), Multigrid for Matrix-Free Finite Element Computations on Graphics Processors, Technical Report
2017-006, Department of Information Technology, Uppsala University.


