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MuLTI-GPU ANALYSIS ON NVIDIA DGX-1
e Parallelization to multiple GPUs on NVIDIA DGX-1 (for P100 and V100)

SUMMARY

MATRIX-FREE ALGORITHM LAYOUT

Matrix-free algorithm in finite element programs ex-
changes matrix-vector product in matrix-based

Matrix-free algorithm: e Performance evaluation of matrix-free finite element kernels from deal .11 library (www.dealii.org) on Intel Broadwell, Intel KNL, Intel Skylake, NVIDIA Pascal,

and NVIDIA Volta
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Broadwell e Conjugate gradient iterative solver precon- Weak scalingp=4,9g=>5
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