
Our research is about snow accretion on a train. The train travels over snow covered tracks, snow accretes to train bogies. When the
accreted snow dropped off from train bogies, they might damage the railway ground facilities along the tracks, the train devices, etc.

To establish countermeasures against the damage, we have developed a snow accretion simulator. By performing snow accretion
analysis for various modified train shape, we will find the train shape which reduces the amount of accreted snow.

Motivation and Objective

We have validated the results obtained from our snow accretion by comparing them with those obtained from the 
experiments by the use the snowfall wind tunnel. Additionally, since this snow accretion simulator is made by the distributed
memory parallel calculation programing, it allows us to solve a very huge calculation model such as a whole train bogie. 
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Numerical Coupled Analysis Method by Air Flow Analysis and Snow Accretion Analysis
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Development of Numerical Coupled Analysis Method 
by Air Flow Analysis and Snow Accretion Analysis
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Analysis

 Analysis area: 5m×1m×1m
 About 60 million particles
 Particle diameter: 1mm
 1,000,000 steps
 264 nodes of Cray XC50
 Total wall-clock time: 12hours

 Analysis area: 5m×1m×1m
 188 million grids (1710x440x250)
Minimum grid spacing: 1mm
 About 1,000,000 steps
 264 nodes of Cray XC50
 Total wall-clock time: 5hours

Air flow analysis

Snow accretion analysis

Inflow

if max div v < α

Inflow
Inflow

Inflow

Experiment

Snow accretion analysis and air flow analysis 
Transparent particles are flying snow particles.  Opacity particles are snow 

accretion particles. Colors are velocity magnitude of air flow.
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 Analysis area: 4m×1m×1m
 About 10 million particles
 Particle diameter: 1mm
 1,000,000 steps
 264 nodes of Cray XC50
 Total wall-clock time: 3hours

 Analysis area: 4m×1m×1m
 257million grids (1100x500x500)
Minimum grid spacing: 1mm
 About 1,000,000 steps
 264 nodes of Cray XC50
 Total wall-clock time: 7hours
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Experiment of snow accretion 
at snowfall wind tunnel  

at Snow and Ice Research Center, National Research Institute for 
Earth Science and Disaster Resilience

The experiment team realizes the observed actual phenomenon for simple and 
small model using the snowfall wind tunnel. The analysis team develops the 
snow accretion analysis method using Cartesian grid methods and particle 
method. The developed snow accretion simulator is validated by trial and error 
with the experiment using simple and small models. 
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Airflow simulator

Particle Simulator

Halo area is generated. Domain decomposition for 
buckets by ParMETIS library 

The number of particles in each 
domain is equally partitioned.

Embedding particles in buckets
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 Navier‐Stokes equation for 
Incompressible fluid flow

 Finite difference method for 
nonuniform grid

 Fractional step method

 2nd-order central difference 

 3rd-order Adams-Bashforth methods

 Poisson equation solver by Jacobi 
method 

 LES model by coherent structure 
Smagorisky model

 Orthogonal domain decomposition

 Target problem size : 10 million - 100 
billion grids

 Compiler : Fortran 90

 Particle simulator by particle 
interaction

 Moving Particle Simulation 
(MPS) method

 Corrosion detection among
particles using buckets

 Dynamic load balancing by 
ParMETIS

 Target problem size : 1 million -
10 billion particles

 Compiler : C

Overview

Overview

Domain decomposition and Halo exchange Dynamic load balancing

Strong scaling of 10 billion particles by K computer

System Site Processor (peak FLOPS) Nodes

K computer RIKEN
2.0 GHz SPARC64 VIIIfx,

8-Core (128 GFLOPS)
88,128

(1 CPUs / node)

FX100 Nagoya Univ.
2.2 GHz SPARC64 XIfx,

32-Core (1,126 GFLOPS)
2,880

(1 CPUs / node)

XC50
Railway Technical 
Research Institute

2.7 GHz Intel Xeon Gold 6150,
18-Core (1,555 GFLOPS)

264  
(2 CPUs / node)

Supercomputer used in this research
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Communication method between airflow simulator and particle simulator 
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Communication of velocity distribution 
from airflow simulator to particle simulator 

Communication of boundary shape
from particle simulator to airflow simulator 
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Strong scaling of 100 billion grids by K computer

Elapsed (s)
MFLOPS / 
PEAK (%)

Memory access 
throughput / 

PEAK (%)
SIMD (%)

L1 cache 
miss (%)

L2 cache 
miss (%)

TLB miss 
(%)

Average Maximum

LES model 0.94 5.08 32.04 71.55 4.32 3.22 0.0285

Viscosity and Advection 0.69 4.74 35.95 80.19 4.94 3.24 0.0240

Poisson's equation 2.24 3.71 27.90 15.97 2.89 1.79 0.0007

One Loop 4.44 3.85 29.96 29.75 3.41 2.33 0.0077

Elapsed (s)
MFLOPS / 
PEAK (%)

Memory access 
throughput / 

PEAK (%)
SIMD (%)

L1 cache 
miss (%)

L2 cache 
miss (%)

TLB miss 
(%)

Average Maximum

One loop 0.73 25.8 0.30 49.2 5.09 0.02 0.00

Computational Performances of 100 billion grids by 6,144 nodes

Computational Performances of 10 billion particles by 768 nodes
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