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Interactive Distributed Deep Learning with Jupyter Notebooks
Extended Abstract
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Deep learning researchers are increasingly using Jupyter notebooks to implement interactive, reproducible workflows. Such solutions
are typically deployed on small-scale (e.g. single server) computing systems. However, as the sizes and complexities of datasets and
associated neural network models increase, distributed systems become important for training and evaluating models in a feasible
amount of time. In this poster we describe our work on Jupyter notebook solutions for distributed training and hyper-parameter
optimization of deep neural networks on high-performance computing systems.
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Deep learning (DL) [LeCun et al. 2015], the sub-field of machine learning which uses multi-layer neural networks (NNs)
to solve complex tasks with data, has gained a great deal of popularity in recent years in part due to the availability of
large datasets and increasingly powerful computing resources. Meanwhile, Jupyter [Kluyver et al. 2016] notebooks
enable code, graphical results, and rich documentation to be combined into an interactive computational narrative,
and have become the de facto standard for data science collaboration, development and pedagogy. Notebook-based DL
workflows are widely used but typically deployed on small-scale computing systems, but as the sizes and complexities of
datasets and associated neural network models increase, distributed computing systems become essential for generating
the best results in a reasonable time. In particular, models that are slow to train can benefit from distributed data-parallel
training, and model-selection tasks can be accelerated with distributed hyper-parameter optimization (HPO). In this
poster we demonstrate several distributed notebook-based deep learning workflows on HPC systems, interfacing to
the Cori supercomputer at NERSC. We describe our architecture to effectively use these HPC resources via Jupyter, as
shown in Figure 1, taking into account the hardware and policy restrictions that are common with other large HPC
machines. We then present our notebook-based approaches, including scaling results for distributed training showing
no overhead from the notebook infrastructure (Figure 2). We take advantage of and build on features available in the
Jupyter and Python ecosystem including JupyterHub, IPyWidgets, IPython “magic” commands, Dask, and IPyParallel
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Fig. 1. Diagram of the distributed workload system

Fig. 2. Scaling of distributed training with and without the notebook infrastructure (left). Screenshot of interactive Jupyter widget for
HPO (right).

which provide us with tools to interact with the backend tasks directly through a visual interface (Figure 2). As well as
human interaction we couple this infrastructure with a powerful automated hyper-parameter framework incorporating
genetic algorithms. We demonstrate these methods with a science use-case and dataset from High Energy Physics
which applies convolutional neural networks (CNNs) to classify images formed from Large Hadron Collider events, and
is described in detail in [Bhimji et al. 2017]. We find that we can improve on state-of-the-art results by using distributed
HPC resources to improve model parameters. Example notebooks and recipes for running these at NERSC are provided.
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