Abstract
To evaluate, validate, and refine the design of a new quantum algorithm or a quantum computer, researchers and developers need methods to assess their correctness and fidelity. This requires the capability of simulation for full state quantum amplitude. However, the number of quantum state amplitudes increases exponentially with the number of qubits, leading the memory requirement growing exponentially. In this work, we present our technique to simulate more qubits than previously reported by using lossy data compression. Our empirical data suggests that we can simulate full state quantum circuits up to 63 qubits with 8 petabytes memory.

Objective
Quantum Circuits Simulation
- Intel-4Q: Distributed High Performance Quantum Computing Simulator
 - Using MPI (message-passing-interface) protocols to store and manipulate the quantum state for both intra- and inter-node operations.
 - Full state amplitude-vector update
 - Capable of high depth quantum circuits simulation

Data Compression in Quantum Circuits Simulation
- S2: Error-bounded Lossy Compressor for HPC Data
 - Support parallel-in situ compression
 - MPICH-G2

Introduction
Quantum State
- Given n qubits, the size of the state vector is 2^n complex amplitudes.
- |Ψ⟩ = a_0|000...000⟩ + a_1|000...001⟩ + ... + a_{111...111}⟩
- Quantum Gates: H, X, Y, Z, S, T, C
- Each quantum gate is expressed by a corresponding matrix.
- Applying a quantum gate to the quantum state is equivalent to multiplying the state vector by the corresponding matrix.

Simulation:
- The full quantum state vector is divided into several state vector blocks.
- All state vector blocks are compressed and stored in memory.
- Each block is decompressed to perform the computation.
- The block is compressed again after the computation.
- Each state vector block is decompressed and compressed for each gate operation.

Results

Conclusion
- We present a full state quantum circuits simulation technique to simulate more qubits than previously reported by using lossy data compression.
- Our approach compress the state vector to reduce the memory requirement, so the we can simulate a larger quantum system with the same memory capacity.

Future Work
- Analyzing effect of compression errors and relationship to real physical noise
- Integration with other approximate simulation techniques
- Evaluating different compression algorithms for quantum state

References

Acknowledgments
This research was sponsored by the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357. This research was supported by the Executive Computing Project (ECP), Project Name: 11-50-70-00, a collaborative effort of two DOE organizations – the Office of Science and the National Nuclear Security Administration, responsible for the planning and preparation of a capable national ecosystem, including software, applications, frameworks, and technologies, and their related engineering and early testing. This work was performed under the auspices of the U.S. Department of Energy (DOE) Office of Science. This work was performed at the Leadership Computing Facility, Argonne National Laboratory (USA); Virginia National Laboratory (USA). The International Conference for High Performance Computing, Networking, Storage and Analysis (SC’18) November 11-16, 2018

The International Conference for High Performance Computing, Networking, Storage and Analysis (SC’18) November 11-16, 2018