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1 INTRODUCTION
Deep neural networks (DNNs) have gained tremendous interest due
to their potential for solving complex problems. With the growth of
computation power of processors and accelerators, such as on lead-
ership High-Performance Computing (HPC) systems, larger datasets
can be trained more efficiently with DNNs. However, not many ef-
forts have worked to improve I/O support for DNNs to match the
increasing computation power. Typically, on HPC systems, a train-
ing dataset is stored on a parallel file system or node-local storage
devices. However, not all HPC clusters have node-local storage (e.g.,
SSD), and large mini-batch sizes stress the read performance of
parallel file systems since the large datasets cannot fit in file sys-
tem caches. To make things worse, large mini-batches have been
widely used in DNN training for speeding up training and maintain-
ing accuracy [3–5, 7]. Thus, it is a challenge for DNNs with large
mini-batches to achieve high training performance on HPC systems,
particularly those with GPUs.

In prior work, we proposed DeepIO [8] to mitigate the I/O pres-
sure when loading datasets from parallel file systems. DeepIO is
designed to support the I/O behavior of TensorFlow [2] and lever-
ages on-node memory and InfiniBand between nodes to assist the
mini-batch generation. TensorFlow is a popular machine learning
framework that supports splitting a larger mini-batch into multiple
small pieces or fetching multiple small mini-batches simultaneously
to serve different workers, which is critical for achieving high train-
ing throughput. However, a key limitation of DeepIO is that it does
not support multiple training workers on a single compute node. In
this work, we address this gap with the following contributions:

• Modify DeepIO framework to support multiple training clients
on a single node.

• Evaluate multi-client DeepIO against state of the art in-memory
file systems.

• Compare DeepIO API against TensorFlow API.
• Explore the potential of DeepIO in real DNN training.

2 DEEPIO WITH NEW FEATURES
DeepIO is a temporary in-memory storage system co-located with
a distributed DNN training application. DeepIO preloads datasets
from backend storage to an in-memory storage buffer and incorpo-
rates several techniques to improve mini-batch read performance,
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Figure 1: Data flow of reading dataset for TensorFlow.

including RDMA data transfer (RDMA-assisted in-situ shuffling),
overlapping I/O operations with training iterations (input pipelining),
and relaxed order of records retrieval (entropy-aware opportunis-
tic ordering). DeepIO also includes a DeepIO TensorFlow API to
facilitate the DeepIO’s integration with TensorFlow.

In this work, to support multiple clients on a single node, we intro-
duce multiple read buffers to distinguish the requests and elements
for different training workers on top of DeepIO’s old architecture
(see Figure 1). Every read buffer is divided into multiple fixed length
blocks which are viewed by its assigned client as a ring. Users decide
the total count of read buffers, read buffer size, and block size at
initialization. The read buffers are created in shared memory and
exposed to RDMA for fast element read.

The original DeepIO achieved RDMA-assisted in-situ shuffling
by randomly fetching elements of mini-batches from storage buffers
via memcpy or RDMA_read to ensure good randomization of the input
sequence and to reduce additional memory footprints in DNN train-
ing process. To support multiple clients on a single node, we modify
DeepIO so that the DeepIO server on a node dispatches the randomly
fetched elements to all read buffers, which are determined by users
or DeepIO servers. The independent read buffers can guarantee that



the elements are returned to the correct clients without additional
communication cost.

The purpose of input pipelining in DeepIO is to overlap I/O time
with training iterations, both when reading datasets from in-memory
read buffers or backend storages. To support multiple clients in
DeepIO, we modify the in-memory pipeline of DeepIO so that the
servers handle requests from all clients in a round robin manner.

DeepIO uses entropy-aware opportunistic ordering to relax the
input order while still delivering proper randomization with the input
pipeline. Because the training input order needs to be shuffled, we
use cross-entropy to estimate the randomization level when loading
datasets from backend storage. We do not need to modify DeepIO
to support this feature since it is to address randomization level
estimation instead of directly interacting with data movement.

We also modify the DeepIO TensorFlow API for multi-client
support, including passing the client ID and reading the individual
client read buffer.

3 EXPERIMENTAL EVALUATION
To evaluate our multi-client DeepIO implementation, we measure
the aggregate bandwidth when there are multiple training clients on
a compute node and use a dummy dataset with random numbers to
represent the dataset content for bandwidth tests. The read pattern
in all read tests is fully randomized across the dataset, as fully
randomized input is critical for DNN training. The results in Fig. 2(a)
and Fig. 2(b) are from executions on eight nodes with a 32 GB
dataset and a transfer size of 256 KB. During the read tests, we vary
the number of clients from 8 to 128, which means 1 to 16 clients per
node. In addition, we also explore the potential of DeepIO in real
DNN training as shown in Fig. 3.

Fig. 2(a) shows the aggregate bandwidth of running different
client counts over BeeGFS[1], Octopus[6], and DeepIO. BeeGFS is a
traditional parallel file system mounted over tmpfs. Octopus is a state-
of-the-art RDMA based memory file system. As BeeGFS delivers
relatively low read performance on the fully randomized read, we
use the N-to-N sequential read pattern to collect BeeGFS’s read
bandwidth as shown in Fig. 2(a). Besides, some results are missing
for Octopus as we only manage to run Octopus for up to two clients
per node without errors. As shown in Fig. 2(a), DeepIO outperforms
BeeGFS and Octopus by at least 5.1× and 1.2×, respectively. We
also observe that the performance of DeepIO does not increase with
the client count, as one DeepIO client per node already saturates
the network bandwidth. However, when using DeepIO through our
DeepIO Tensorflow API (DeepIO-TF), we can see that there is a
significant improvement with the larger number of clients, as shown
in Fig. 2(b). This counters the non-trivial overheads introduced by
the API.

Fig. 3 shows the average time of an epoch and an iteration when
training CIFAR10 with CifarNet. During the test, we train CifarNet
with DeepIO TensorFlow API over memory-based DeepIO and also
BeeGFS over different node counts. As the size of CIFAR10 is
relatively small, the BeeGFS tests benefit from the cache. Therefore,
the performance difference between DeepIO and BeeGFS is not
apparent. We take the test of varying the training dataset size for
exploring the capability of DeepIO as our future work.
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(a) BeeGFS vs. Octopus vs. DeepIO.
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Figure 2: Aggregate read bandwidth of multiple clients.
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Figure 3: Average time of training with CIRFAR10
(batch_size=128).

4 CONCLUSION AND FUTURE WORK
In this study, we enable the multi-client support for DeepIO, an I/O
solution for DNN training on the HPC system. Our implementation
shows that multi-client support is still crucial for improving I/O
bandwidth when training with TensorFlow.

In the future, we plan to evaluate DeepIO with more DNNs and
different sizes of datasets, to further scrutinize DeepIO’s advantages
and disadvantages.
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