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ABSTRACT

The Cholesky QR algorithm, which computes the QR fac-
torization of a matrix, is a simple yet efficient algorithm as
it is rich in matrix-matrix operations. It is therefore better
suited for high-performance computing than other factor-
ization methods that depend on matrix-vector approaches.
However it suffers from numerical instability. In a recent work,
this instability has been remedied by repeating Cholesky QR
twice; this approach is called the CholeskyQR2 algorithm.
ChokeskyQR2, however, is still prone to numerical breakdown
when applying to ill-conditioned matrices with condition num-
ber roughly larger than 108. To overcome this limitation, we
introduce a shifting technique to Cholesky QR and use it as
a preconditioning step before CholeskyQR2. The key idea is
that Cholesky QR with shift reduces the condition number
of the input matrix. We call the resulting algorithm shiftedC-
holeskyQR3, which is still simple and does not need extended
precision arithmetic. In this poster, we present the results
of our performance evaluation of shiftedCholeskyQR3. We
demonstrate that shiftedCholeskyQR3 accurately computes
the QR factorization of ill-conditioned matrices and that it
outperforms other conventional algorithms in execution time.

1 INTRODUCTION

Let A ∈ Rm×n (m ≥ n, especially m ≫ n). We consider com-
puting its QR factorizationA = QR, withQ ∈ Rm×n, QTQ =
In and R ∈ Rn×n is an upper triangular matrix. We focus on
the Cholesky QR algorithm [9], which computes the QR fac-
torization via the Cholesky factorization of the Gram matrix
A⊤A (Algorithm 1) [5, Thm. 5.2.3]. Cholesky QR has nice
properties from the HPC viewpoint: most of its computation
can be done by Level-3 BLAS routines (dsyrk/dgemm and
dtrsm), and it can be regarded as a communication-avoiding
algorithm [2]. However, unfortunately its numerical insta-
bility prevents one from using it in practical situations. In
recent work [4, 11, 12], it was shown that this instability can
be remedied by simply repeating Cholesky QR twice, which
is called the CholeskyQR2 algorithm (Algorithm 2). Despite
these improvements one faces the issue of breakdown when
applying CholeskyQR2 on an ill-conditioned matrix where
the condition number of the matrix κ2(A) is roughly larger
than 108 when using double precision arithmetic. A mixed-
precision approach was proposed for solving this problem [13],
but in order to obtain sufficient performance, highly tuned

Algorithm 1 Cholesky QR

Function: [Q, R] = CholQR(A)
1: W := A⊤A
2: R := chol(W ) // Cholesky factorization
3: Q := AR−1

Algorithm 2 CholeskyQR2

Function: [Q, R] = CholQR2(A)
1: [A′, R1] := CholQR(A)
2: [Q,R2] := CholQR(A′)
3: R := R2R1

double-double precision routines are needed, which are rarely
available in current standard computational environments.

In this work, we overcome the instability in CholeskyQR2
using only double precision operations. We introduce a shift
technique to Cholesky QR and use it as a preconditioning
step before CholeskyQR2; we call the resulting algorithm
shiftedCholeskyQR3. Details on the derivation and stability
analysis is described in [3]; here we briefly describe it and re-
port its performance. The performance evaluation presented
here shows promising results that shiftedCholeskyQR3 com-
putes accurate QR factorizations for ill-conditioned matrices
and that it outperforms other conventional algorithms in a
modern multi-core environment.

2 THE SHIFTED CHOLESKY QR
ALGORITHM

When applying CholeskyQR2 to an ill-conditioned (roughly
κ2(A) ≳ 108 in double precision arithmetic), it usually fails
to compute the QR factorization due to the breakdown of the
Cholesky factorization in the first Cholesky QR algorithm.
One reason is that the computed Gram matrix is not positive
definite, and the other reason is that rounding errors arise in
the computation of the Cholesky factorization.

Our idea is motivated by the notion that Cholesky QR and
CholeskyQR2 are classified into triangular orthogonalization
type algorithms [10, Lecture 10]. Namely, if we find an upper

triangular matrix R̃ that satisfies κ2(AR̃) ≲ 108, then we can

compute the QR factorization of AR̃ using CholeskyQR2,
and then obtain the QR factorization

AR̃ = QR ⇒ A = Q(RR̃−1).
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Algorithm 3 shifted Cholesky QR

Function: [Q, R] = sCholQR(A, s) // s > 0
1: W := A⊤A
2: R := chol(W + sI) // Cholesky factorization
3: Q := AR−1

Algorithm 4 shiftedCholeskyQR3

Function: [Q, R] = sCholQR3(A, s) // s > 0
1: [A′, R1] := sCholQR(A, s)
2: [Q,R2] := CholQR2(A′)
3: R := R2R1

The question is hence how to obtain a good R̃. To answer
this, we use the fact that if the smallest eigenvalue of a
symmetric positive definite matrix is sufficiently large, its
Cholesky factorization numerically succeeds [8, Thm. 2.3]. In
light of this, we introduce a small shift to the computed Gram
matrix and let R̃ be the inverse of its Cholesky factor. One can
show [3] under natural assumptions that κ2(AR̃) ≪ κ2(A) if
s is sufficiently small. We call this process shifted Cholesky QR
(Algorithm 3) and consider using it as a preconditioning step
before CholeskyQR2; we also refer to as shiftedCholeskyQR3
the overall algorithm, described in Algorithm 4. It is worth
repeating that no extended precision arithmetic is necessary
for shiftedCholeskyQR3.

3 PERFORMANCE EVALUATION

We evaluated the performance of the shiftedCholeskyQR3
algorithm and other competitive algorithms on the Laurel 2
supercomputer system at ACCMS, Kyoto University, whose
computational nodes have two 18-core Intel Xeon E5-2695v4
(2.1GHz) processors and 128GB memory. The code is writ-
ten in Fortran90 using LAPACK and BLAS routines, and
complied by Intel Fortran complier (ifort ver. 17.0.6) with
options “-O3, -mcmodel=medium, -shared-intel, -qopenmp,
-ipo, -xHost”. We used the Intel MKL library (ver. 2017.0.6,
with “-mkl=parallel”).

Test matrices are generated by forming A := UΣV , where
U and V are random m × n and n × n orthogonal matrix,
respectively, and Σ = diag(1, σ1/n−1, . . . , σn−2/n−1, σ) where
0 < σ < 1, so κ2(A) = 1/σ. In the following evaluation, we
set the shift parameter s =

√
m∥A∥2F × 10−16 for shiftedC-

holeskyQR3, as introduced in [3].
Table 1 compares the accuracy of each method as measured

by the loss of orthogonality and residual of the computed Q
and R factors. Here dgeqrf and dgeqr are Householder QR
routines provided in LAPACK. We use them in combination
with routines dorgqr and dgemqr for forming the explicit Q
factors. It is worth noting that dgeqr is a novel routine that
appropriately uses the TSQR algorithm [2]. From the table,
we see that shiftedCholeskyQR3 successfully computes Q
and R as accurately as Householder QR methods, whereas
CholeskyQR2 fails due to the breakdown in the Cholesky
factorization of the Gram matrix.

Table 1: Accuracy: m = 100000, n = 64, κ2(A) = 1.0 ×
1014.

Method ∥Q⊤Q− In∥F /
√
n ∥QR−A∥F /∥A∥F

scholqr3 2.19× 10−16 4.20× 10−16

cholqr2 failed
dgeqrf + dorgqr 3.00× 10−16 5.56× 10−16

dgeqr + dgemqr 2.75× 10−16 7.60× 10−16

cgs 3.82× 100 2.72× 10−16

mgs 6.96× 10−4 2.72× 10−16

cgs2 5.16× 10−16 2.77× 10−16

Table 2: Execution time (in sec.) on a node of Lau-
rel 2: m = 100000.

Method n = 32 n = 64 n = 128

scholqr3 (syrk) 2.39× 10−3 6.70× 10−3 2.47× 10−2

scholqr3 (gemm) 2.58× 10−3 8.17× 10−3 3.06× 10−2

dgeqrf + dorgqr 6.13× 10−2 8.43× 10−2 1.19× 10−1

dgeqr + dgemqr 4.38× 10−3 1.30× 10−2 4.20× 10−2

cgs2 9.41× 10−3 2.24× 10−2 1.31× 10−1

block-cgs2 1.52× 10−2 2.82× 10−2 7.13× 10−2

(bl = 16) (bl = 32) (bl = 32)

We next give the results of execution time measured by
using a node of Laurel 2 (using 36 threads) in Table 2. Here
we evaluate two implementations of shiftedCholeskyQR3;
using dsyrk or dgemm for computing A⊤A. We also compare
them with the block version of cgs2 [1]; the size of block
is also described in the table. The table clearly shows that
shiftedCholeskyQR3 outperforms other methods for a wide
range of n; the syrk version is slightly faster than the gemm
version in this environment.

4 CONCLUSION

We proposed a shift technique for avoiding the numerical
breakdown of CholeskyQR2 when applied to an ill-conditioned
matrix. Our performance results indicate that shiftedCholeskyQR3,
which uses shifted Cholesky QR as a preconditioning step
before CholeskyQR2, computes the QR factorization of ill-
conditioned matrices robustly and efficiently, only using dou-
ble precision arithmetic. It is also demonstrated that shifted-
CholeskyQR3 can outperform other conventional algorithms
in a modern multi-core environment.

Detailed stability analysis of shiftedCholeskyQR3 is given
in the preprint [3], including shift strategies to avoid Cholesky
breakdown. There we also describe and analyze an extension
of shiftedCholeskyQR3 to an oblique inner product space [6,
7].
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