Performance evaluation of the shifted Cholesky QR algorithm
for ill-conditioned matrices

Takeshi Fukaya
Hokkaido University
fukaya@iic.hokudai.ac.jp

Yusaku Yamamoto
The University of
Electro-Communications

ABSTRACT

The Cholesky QR algorithm, which computes the QR fac-
torization of a matrix, is a simple yet efficient algorithm as
it is rich in matrix-matrix operations. It is therefore better
suited for high-performance computing than other factor-
ization methods that depend on matrix-vector approaches.
However it suffers from numerical instability. In a recent work,
this instability has been remedied by repeating Cholesky QR
twice; this approach is called the CholeskyQR2 algorithm.
ChokeskyQR2, however, is still prone to numerical breakdown
when applying to ill-conditioned matrices with condition num-
ber roughly larger than 10®. To overcome this limitation, we
introduce a shifting technique to Cholesky QR and use it as
a preconditioning step before CholeskyQR2. The key idea is
that Cholesky QR with shift reduces the condition number
of the input matrix. We call the resulting algorithm shiftedC-
holeskyQR3, which is still simple and does not need extended
precision arithmetic. In this poster, we present the results
of our performance evaluation of shiftedCholeskyQR3. We
demonstrate that shiftedCholeskyQR3 accurately computes
the QR factorization of ill-conditioned matrices and that it
outperforms other conventional algorithms in execution time.

1 INTRODUCTION

Let A € R™*™ (m > n, especially m > n). We consider com-
puting its QR factorization A = QR, with Q € R™*" QTQ =
I, and R € R™*" is an upper triangular matrix. We focus on
the Cholesky QR algorithm [9], which computes the QR fac-
torization via the Cholesky factorization of the Gram matrix
AT A (Algorithm 1) [5, Thm. 5.2.3]. Cholesky QR has nice
properties from the HPC viewpoint: most of its computation
can be done by Level-3 BLAS routines (dsyrk/dgemm and
dtrsm), and it can be regarded as a communication-avoiding
algorithm [2]. However, unfortunately its numerical insta-
bility prevents one from using it in practical situations. In
recent work [4, 11, 12], it was shown that this instability can
be remedied by simply repeating Cholesky QR twice, which
is called the CholeskyQR2 algorithm (Algorithm 2). Despite
these improvements one faces the issue of breakdown when
applying CholeskyQR2 on an ill-conditioned matrix where
the condition number of the matrix x2(A) is roughly larger
than 10® when using double precision arithmetic. A mixed-
precision approach was proposed for solving this problem [13],
but in order to obtain sufficient performance, highly tuned

Ramaseshan Kannan
Arup UK

Yuji Nakatsukasa

National Institute of Informatics

Yuka Yanagisawa
Waseda University

Algorithm 1 Cholesky QR
Function: [@, R] = CholQR(A)

L W:i=ATA
2: R := chol(W) // Cholesky factorization
3 Q= AR™!

Algorithm 2 CholeskyQR2

Function: [Q, R] = CholQR2(A)
1: [A’, Ry] := CholQR(A)
2: [Q7 RQ] = ChOlQR(A/)
3: R:= R2R1

double-double precision routines are needed, which are rarely
available in current standard computational environments.

In this work, we overcome the instability in CholeskyQR2
using only double precision operations. We introduce a shift
technique to Cholesky QR and use it as a preconditioning
step before CholeskyQR2; we call the resulting algorithm
shiftedCholesky@QRS3. Details on the derivation and stability
analysis is described in [3]; here we briefly describe it and re-
port its performance. The performance evaluation presented
here shows promising results that shiftedCholeskyQR3 com-
putes accurate QR factorizations for ill-conditioned matrices
and that it outperforms other conventional algorithms in a
modern multi-core environment.

2 THE SHIFTED CHOLESKY QR
ALGORITHM

When applying CholeskyQR2 to an ill-conditioned (roughly
k2(A) > 10® in double precision arithmetic), it usually fails
to compute the QR factorization due to the breakdown of the
Cholesky factorization in the first Cholesky QR algorithm.
One reason is that the computed Gram matrix is not positive
definite, and the other reason is that rounding errors arise in
the computation of the Cholesky factorization.

Our idea is motivated by the notion that Cholesky QR and
CholeskyQR?2 are classified into triangular orthogonalization
type algorithms [10, Lecture 10]. Namely, if we find an upper
triangular matrix R that satisfies ko(AR) < 108, then we can
compute the QR factorization of AR using CholeskyQR2,
and then obtain the QR factorization

AR=QR = A=Q(RR™").

Takeshi Fukaya, Ramaseshan Kannan, Yuji Nakatsukasa, Yusaku Yamamoto, and Yuka Yanagisawa

Algorithm 3 shifted Cholesky QR

Function: [Q, R] = sCholQR(4, s) // s>0
1: W= ATA
2: R := chol(W + sI) // Cholesky factorization
3: Q = AR71

Algorithm 4 shiftedCholeskyQR3

Function: [@Q, R] = sCholQR3(A4, s) // s> 0
1: [A’, R1] := sCholQR(4, s)
2. [Q, Ra] := CholQR2(A’)
3: R:= RoRy

The question is hence how to obtain a good R. To answer
this, we use the fact that if the smallest eigenvalue of a
symmetric positive definite matrix is sufficiently large, its
Cholesky factorization numerically succeeds [8, Thm. 2.3]. In
light of this, we introduce a small shift to the computed Gram
matrix and let R be the inverse of its Cholesky factor. One can
show [3] under natural assumptions that ko(AR) < ka(A) if
s is sufficiently small. We call this process shifted Cholesky QR
(Algorithm 3) and consider using it as a preconditioning step
before CholeskyQR?2; we also refer to as shiftedCholeskyQRS3
the overall algorithm, described in Algorithm 4. It is worth
repeating that no extended precision arithmetic is necessary
for shiftedCholeskyQR3.

3 PERFORMANCE EVALUATION

We evaluated the performance of the shiftedCholeskyQR3
algorithm and other competitive algorithms on the Laurel 2
supercomputer system at ACCMS, Kyoto University, whose
computational nodes have two 18-core Intel Xeon E5-2695v4
(2.1GHz) processors and 128 GB memory. The code is writ-
ten in Fortran90 using LAPACK and BLAS routines, and
complied by Intel Fortran complier (ifort ver. 17.0.6) with
options “-03, -mcmodel=medium, -shared-intel, ~qopenmp,
-ipo, -xHost”. We used the Intel MKL library (ver. 2017.0.6,
with “-mkl=parallel”).

Test matrices are generated by forming A := UXV | where
U and V are random m X n and n X n orthogonal matrix,
respectively, and ¥ = diag(1, gt/r=t L g o) where
0 <o <1,s0 k2(A) = 1/0. In the following evaluation, we
set the shift parameter s = v/m||A||% x 1076 for shiftedC-
holeskyQR3, as introduced in [3].

Table 1 compares the accuracy of each method as measured
by the loss of orthogonality and residual of the computed @
and R factors. Here dgeqrf and dgeqr are Householder QR
routines provided in LAPACK. We use them in combination
with routines dorgqr and dgemqr for forming the explicit Q
factors. It is worth noting that dgeqr is a novel routine that
appropriately uses the TSQR algorithm [2]. From the table,
we see that shiftedCholeskyQR3 successfully computes @
and R as accurately as Householder QR methods, whereas
CholeskyQR2 fails due to the breakdown in the Cholesky
factorization of the Gram matrix.

Table 1: Accuracy: m = 100000, n = 64, k2(A) = 1.0 X
10,

Method [1QTQ — Lullr/vn QR — Allr/|Allr
scholqr3 2.19 x 10716 4.20 x 10716
cholqr2 failed
dgeqrf + dorgqr 3.00 x 10716 5.56 x 10716
dgeqr + dgemqr 2.75 x 10716 7.60 x 10716
cgs 3.82 x 10° 2.72 x 10716
mgs 6.96 x 10~* 2.72 x 10716
cgs2 5.16 x 10716 2.77 x 10716

Table 2: Execution time (in sec.) on a node of Lau-
rel 2: m = 100000.

Method | n=32 n = 64 n =128
scholqr3 (syrk) | 2.39 x 107% 6.70 x 1073 2.47 x 1072
scholqr3 (gemm) | 2.58 x 1073 8.17 x 107% 3.06 x 1072
dgeqrf + dorgqr | 6.13 x 1072 843 x 1072 1.19 x 107+
dgeqr + dgemqr | 4.38 x 107% 1.30 x 1072 4.20 x 102
cgs2 9.41 x107% 2.24x107% 1.31x 107!
block-cgs2 1.52x 1072 2.82x 1072 7.13 x 1072
(bl = 16) (bl = 32) (bl = 32)

We next give the results of execution time measured by
using a node of Laurel 2 (using 36 threads) in Table 2. Here
we evaluate two implementations of shiftedCholeskyQR3;
using dsyrk or dgemm for computing AT A. We also compare
them with the block version of cgs2 [1]; the size of block
is also described in the table. The table clearly shows that
shiftedCholeskyQR3 outperforms other methods for a wide
range of n; the syrk version is slightly faster than the gemm
version in this environment.

4 CONCLUSION

We proposed a shift technique for avoiding the numerical
breakdown of CholeskyQR2 when applied to an ill-conditioned

matrix. Our performance results indicate that shifted CholeskyQR3,

which uses shifted Cholesky QR as a preconditioning step
before CholeskyQR2, computes the QR factorization of ill-
conditioned matrices robustly and efficiently, only using dou-
ble precision arithmetic. It is also demonstrated that shifted-
CholeskyQR3 can outperform other conventional algorithms
in a modern multi-core environment.

Detailed stability analysis of shiftedCholeskyQR3 is given
in the preprint [3], including shift strategies to avoid Cholesky
breakdown. There we also describe and analyze an extension
of shiftedCholeskyQR3 to an oblique inner product space [6,
7).

REFERENCES

[1] Jesse L. Barlow and Alicja Smoktunowicz. 2013. Reorthogonalized
block classical Gram—Schmidt. Numer. Math. 123, 3 (01 Mar
2013), 395-423.

Performance evaluation of the shifted Cholesky QR algorithm for ill-conditioned matrices

[2] James Demmel, Laura Grigori, Mark Hoemmen, and Julien Lan-
gou. 2012. Communication-optimal Parallel and Sequential QR
and LU Factorizations. STAM J. Sci. Comp. 34, 1 (2012), 206—
239.

Takeshi Fukaya, Ramaseshan Kannan, Yuji Nakatsukasa, Yusaku

Yamamoto, and Yuka Yanagisawa. 2018. Shifted CholeskyQR

for computing the QR factorization of ill-conditioned matrices.

(2018). arXiv:1809.11085.

Takeshi Fukaya, Yuji Nakatsukasa, Yuka Yanagisawa, and Yusaku

Yamamoto. 2014. CholeskyQR2: a simple and communication-

avoiding algorithm for computing a tall-skinny QR factorization

on a large-scale parallel system. In Proceedings of the 5th Work-
shop on Latest Advances in Scalable Algorithms for Large-Scale

Systems. IEEE Press, 31-38.

[5] Gene H. Golub and Charles F. Van Loan. 2012. Matriz Compu-
tations (4th ed.). Johns Hopkins University Press.

[6] Ramaseshan Kannan. 2013. Efficient sparse matrix multiple-vector
multiplication using a bitmapped format. In 20th IEEE Interna-
tional Conference on High Performance Computing (HiPC’13).
286-294. https://doi.org/10.1109/HiPC.2013.6799135

[7] Ramaseshan Kannan. 2014. Numerical Linear Algebra problems
in Structural Analysis. Ph.D. Dissertation. School of Mathematics,
The University of Manchester.

[8] Siegfried M. Rump and Takeshi Ogita. 2007. Super-fast validated
solution of linear systems. J. Comput. Appl. Math. 199, 2 (2007),
199-206.

[9] Andreas Stathopoulos and Kesheng Wu. 2002. A Block Orthog-
onalization Procedure With Constant Synchronization Require-
ments. SIAM J. Sci. Comp. 23 (2002), 2165-2182.

[10] Lloyd N. Trefethen and III David Bau. 1997. Numerical Liner
Algebra. STAM, Philadelphia.

[11] Yusaku Yamamoto, Yuji Nakatsukasa, Yuka Yanagisawa, and
Takeshi Fukaya. 2015. Roundoff error analysis of the CholeskyQR2
algorihm. Analysis Electron. Trans. Numer. Anal. 44 (2015),
306-326.

[12] Yusaku Yamamoto, Yuji Nakatsukasa, Yuka Yanagisawa, and

Takeshi Fukaya. 2016. Roundoff error analysis of the CholeskyQR2

algorithm in an oblique inner product. JSIAM Letters 8 (2016),

5-8.

Ichitaro Yamazaki, Stanimire Tomov, and Jack Dongarra. 2015.

Mixed-Precision Cholesky QR Factorization and Its Case Studies

on Multicore CPU with Multiple GPUs. SIAM J. Sci. Comp. 37,

3 (2015), C307-C330.

9

=

(13

https://doi.org/10.1109/HiPC.2013.6799135

	Abstract
	1 Introduction
	2 The shifted Cholesky QR algorithm
	3 Performance evaluation
	4 Conclusion
	References

