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ABSTRACT
The current landscape of Machine Learning (ML) and Deep Learn-
ing (DL) is rife with non-uniform frameworks, models, and system
stacks but lacks standard tools to facilitate the evaluation and mea-
surement of model. Due to the absence of such tools, the current
practice for evaluating and comparing the benefits of proposed AI
innovations (be it hardware or software) on end-to-end AI pipelines
is both arduous and error prone — stifling the adoption of the inno-
vations.

We propose MLModelScope— a hardware/software agnostic plat-
form to facilitate the evaluation, measurement, and introspection
of ML models within AI pipelines. MLModelScope aids applica-
tion developers in discovering and experimenting with models, data
scientists developers in replicating and evaluating for publishing
models, and system architects in understanding the performance of
AI workloads.

1 INTRODUCTION
Machine Learning (ML) and Deep Learning (DL) models are being
introduced at a faster pace than researchers are able to analyze and
study them. Application builders — who may have limited ML
knowledge — struggle to discover and experiment with state-of-the-
art models within their application pipelines. Data scientists find it
difficult to reproduce, reuse, or gather unbiased comparison between
published models. And, finally, system developers often fail to keep
up with current trends, and lag behind in measuring and optimizing
frameworks, libraries, and hardware.

We propose MLModelScope, an open source1, extensible, and
customizable platform to facilitate evaluation and measurements of
ML models within AI pipelines. It is a batteries-included platform
for evaluating and profiling ML models across datasets, frameworks,
and systems. These evaluations can be used to assess model accu-
racy and performance across different stacks. We provide an online
hub of continuously updated assets, evaluation results, and access
to hardware resources — allowing users to test and evaluate mod-
els without installing or configuring systems. It is framework and
hardware agnostic — with current support for Caffe [6], Caffe2 [5],
CNTK [9], MXNet [4], Tensorflow [2], and TensorRT [11] running

1The repository is hosted on Github at https://github.com/rai-project/mlmodelscope
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Figure 1: MLModelScope is built from a set of reusable compo-
nents that allow users to extend and customize.
on ARM, PowerPC, and X86 with CPU, GPU, and FPGA. MLMod-
elScope can be used as an application with a web, command line, or
API interface or can be compiled into a standalone library.

More specifically, MLModelScope:
• Requires no familiarity with the framework APIs, instead provides

a common abstractions that allows programmers to use models.
• No coding is needed to publish models, and enables testing of

custom software and hardware stacks.
• Lowers the cost and effort for performing model analysis and

evaluation, making it easier for others to reproduce, evaluate, and
analyze the model author’s claims.

• Makes it simple for system designers to profile and introspect the
model and its interaction with the software and hardware stack.

2 MLMODELSCOPE DESIGN
MLModelScope employs a distributed system design (shown in
Figure 1) that deploys, evaluates, and measures models across sys-
tems to mirror the behavior of real-world AI pipelines. This design
decision has the byproduct of allowing users to perform parallel eval-
uation and measurement of models across systems. The components

https://github.com/rai-project/mlmodelscope


can be extended or composed to instantiate customized versions of
the platform. Some key components include:

(1) User Interface and API: MLModelScope can be used as an
application or as a library. Users interact with MLModelScope appli-
cation through its website, command line, or its API interface. They
can also compile MLModelScope as a standalone shared library and
use it within their C/C++, Python, or Java projects.
(2) Tracer: Tracer captures the stages of the model evaluation, lever-
ages the predictor’s framework profiling capability, and interacts
with hardware and system level profiling libraries to capture fine
grained metrics.
(3) ML Artifacts: A model manifest contains all the information
needed to reproduce a model’s evaluation: the HW/SW stack to
instantiate, code to run, model and dataset sources. Models and
datasets are downloaded on demand. All artifacts are versioned
using a semantic versioning [8] scheme.
(4) Predictors: A predictor is a thin abstraction layer that exposes
a framework through a common API. The wrapper code interacts
directly with the framework’s C interface and runs within a container.
(5) Manifest and Predictor Registry: MLModelScope uses dis-
tributed key-value database to store the registered model manifests
and running predictors. MLModelScope leverages the registry to fa-
cilitate discovery of models, load balancing request across predictors,
and to solve user constraint for selecting the predictor.

3 PERFORMANCE PROFILING OF
END-TO-END MODEL INFERENCE

MLModelScope captures different granularities of the end-to-end
profile — web API calls, per-layer timing, hardware performance
counter and CUDA execution profile. Since we leverage the frame-
work and system profiling libraries, we incur the same overheads
introduced by the framework and system profiling tools. Web API
calls within an end-to-end model inference include loading the data,
deserializing the model, performing the inference, and presenting the
results. Per-layer timing is obtained through injecting observers into
the framework that MLModelScope supports. When a layer in the
framework is launched, the duration a layer takes and other meta data
is captured by MLModelScope, shown in Figure 2. MLModelScope
integrates with NVIDIA CUDA Profiling Tools Interface (CUPTI)
to capture all CUDA events that occur during execution, shown in
Figure 3. Hardware performance counters can also be captured by
MLModelScope using PAPI, Intel’s power counters, Linux Perf,
and DTrace. Unlike other tools, MLModelScope does not require a
custom framework to perform tracing.

MLModelScope can be used to measure the latency of a model on
a system using a user defined dataset. Figure 4 shows an example of
framework comparison using AlexNet and ILSVRC2012 validation
set on an Amazon P3 machine [7]. The input/output processing time
is omitted and the model weights are persistent on the GPU. Other
existing capabilities in MLModelScope include model accuracy
(Top1, Top5, or the full probabilities), divergence analysis, static
analysis and etc.

4 CONCLUSION AND FUTURE WORK
ML systems are in their infancy, with algorithm performance and
end-to-end system design considered an art rather than a science.
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Figure 2: Layer information of Caffe AlexNet on AWS P2.

Figure 3: MLModelScope provides fine grained performance
tracing for the end-to-end inference pipeline. The traces include
events from the GPU, hardware counters, and disk I/O.
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Figure 4: Per-batch inference latency (log scale) of AlexNet
across different frameworks and batch sizes on the AWS P3 ma-
chine.

A big hurdle in developing systems to optimize ML workflows is
understanding the current usage and bottlenecks. MLModelScope
offers a unified and holistic way to evaluate and measure ML mod-
els within AI pipelines, and gain insights to understand sources of
inaccuracy and inefficiency.

We are currently working on using the data captured from MLMod-
elScope to give users suggestions on the model to use for a dataset,
perform intelligent scheduling and hardware selection, and man-
age the models to optimize the inference pipeline. We are cur-
rently adding predictors that work within cycle accurate simula-
tors [1, 3, 10]. We believe this would lower the barrier for hardware
architects when designing their own custom inference architectures.
We are also adding support for specialized ASICs inference hard-
ware, and expanding the number of models supported through our
FPGA interface.
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