%

P
» Los Alamos

AAAAAAAAAAAAAAAAAA

SANVIDIA.

Dynamic Tracing: Memoization of Task Graphs
for Dynamic Task-Based Runtimes

Wonchan Lee, Todd Warszawski, Alex Aiken Stanford University
Elliott Slaughter SLAC National Accelerator Laboratory
Michael Bauer, Sean Treichler, Michael Garland NVIDIA

November 14,2018 @ SC’18

Task Graphs Simplify Distributed Programming

Task graph is a DAG of tasks where

each taskis an C e e : oy .
opaque computation e Parallel execution is “straightforward” with task
graphs

e Task graphs are most flexible when dynamically
generated

o Dynamic task graphs also facilitate fault recovery,
0ad balancing, task (re-)mapping, resource
allocation, etc.

. ' mutually
8 » unreachable tasks

each edge represents canrunin parallel

ordering between tasks

Approaches to Dynamic Task Graph Construction

Explicit construction Implicit construction

Program = Graph generator Program = Task generator

ew TaskGraph() Q T1(A,B) T2(A) T3(A) T4(B) ...
e & G o

G Q @ T1(A,B) // writes(A),reads(B)

T2(A) /] reads(A)

Ts(A) /] writes(A)
@ T4(B) // writes(B)
7

= n
.add
.add(T2 « T1)
C
C

.add(Ts « {T1, T2})
.add(T4 « T1)

N (a I (e B (a By (a (e

v Efficient v’ Correct by construction
X Error-prone v Composable
X Not composable X Runtime overhead

Is there a hybrid approach that | |
.. Realm, CUDA enjoys benefits of both? Dynamic task-based runtimes

(Legion, StarPU, PaRSEC, PyTorch, etc.)

Dynamic Tracing: Memoizing Task Graphs

o Bring efficiency of explicit construction to dynamic task-based runtimes

e Key observation: programs often have traces of repetitive tasks Subgraphs are
isomorphic!

e Thesame traces produce the same subgraph

task T(x,y) writes(x),reads(y) (U(A D) U(C,B)) '

task U(x,y) reads(x), reads(y) AV . Rk A oy

ahile (5): @ (T(A,B) T(C,D) U(A,D) U(C,B))" (T(A B) T(C,D)) |
T(A,B); T(C,D) Repetltlvetasks l .;
U(A,D); U(C,B)

(U<A DRTE)

Dynamic Tracing: Memoizing Task Graphs

e l|dea: record-and-replay T(

A

Dep. :
Analysis 4

A

A

e Record the subgraph once for a trace

A

A A
O O o O O 0 o O O
" AU U2 U2 U2 U U W A

o

e Improves strong scaling performance by 4.9X U(

Soleil-X (8.4M Cells, Piz Daint)

o

N N
—
Vi

N
o ~ ®
A

A
C
A
C
o Replay the recording whenever applicable T(A
C
A
C
A
C

C
~

M
o

Co
~—

Normalized Throughput

N N N N N N
o = N w EaY w

Dep.
Analysis

Nodes 5

N
—~
>
M
~

Contents

e Programming model

e Baseline dependence analysis
e Challenges in dynamic tracing
e Optimizations

e Experiment results

Programming Model

e Task-based

task Ti(x) reads(x),writes(x)

. task T.(x, d ,writ

e Programs consist of tasks ask Ta(x,y) reads(x),writes(y)
T1(R)

e Tasksuseregions and declare permissions T2(7,5)

e Distributed

T1(R) T2(R,S) [EJdy» T1(R2) T2(RP,S?2)

e Regions must be mapped to instances

e Oneregion can be mapped to multiple instances
a — a — b GQa
— Coherence must be maintained by the runtime (Tl(R) (R) (TZ(R >))

copy is issued for
Ra contains the last coherent accesstoR RPIs not valid yet

updates to R, oris valid for read access

Baseline Dependence Analysis

Dependence

—_—
Analysis Task graph

T1(R?)
T2(RP,S2)
T3(R2,S?)

Baseline Dependence Analysis

reads (R2),writes(R?)
reads (RP),writes(S?)
writes(R?3),reads (S?)

Task

T1(R?3)

T2(Rb,S2)

T3(R2,S?)

Valid Instances

Task graph

(T1(R?))

(T1(R?)]—»(Ra T Rb)
(Tz(Rb,Sa))

([TiR?) F—{ Re o R0
| |
(T3(Re,52) J—{ Ta(Re,52))

Challenges in Dynamic Tracing

o Challenge 1: transition from dep. analysis to subgraph replay

Captured subgraph G

(Tl(Ra))_» e — Rb) Task graph from

dependence analysis

(Tg(Ra,sa) (Tz(Rb 5a))

: | y :
Found the same trace (T1(R2))_> Ra — Rb) How can we connect G to the
: l l : graph from dep. analysis?

P (T3(Rs,52) f—{Ta(Re,5%))

. T1(R3) T(Rb,S2) T3(Ra3,S2) ...

10

Challenges in Dynamic Tracing

e Solution: introduce a fence

Task graph from
dependence analysis

Only T1 needs to wait for the fence)
. T4 (R Ra — Rb
as T1 dominates other tasks (1(1))

|
(T3(Re,52) J—{ Ta(Re,52))

11

Challenges in Dynamic Tracing

e Challenge 2: coherence

Task graph from
dependence analysis

Valid Instances of R: Rc

Safe to reuse? No, unless Rais valid

T1(Ra)—> Ra — Rb)

(T3(Ra,sa) (Tz(Rb 5a))

Found the same trace (RE = Re

. T1(R3) T(Rb,S2) T3(Ra3,S2) ...

12

Challenges in Dynamic Tracing

e Solution: remember precondition for a safe replay

asks: T1(Ra8) T2(Rb,S2) Ts3(R2,S2)

Precondition: Ra is valid

Dependence

> Task graph

EWAR

{ 3 Task eraph:
\Jnstances / SR
(Ti(Re) |—{ Rs — Rb)
Valid instances are input of l

dependence analysis

|
(T3(Re,52) }—{ T2(R,59))

13

Challenges in Dynamic Tracing

o Challenge 3: transition back to normal dep. analysis

Two inconsistencies
1. Ti,T2,and T3z are unknown to dep. analysis (T1(R3)]—> Ra — Rb)

2. Thelist of valid instances is stale l l
\ (T3(Ra’Sa) (TZ(Rb’Sa))
Dep.
0(Re, 50

14

Challenges in Dynamic Tracing

e Solution

o Make asummary task Tasks: T1(R2) T2(RP,S2) Ts(Re,Sa)

Precondition: Ra is valid

o Compute postcondition to apply after each

replay Task graph:

T1(Ra Ra — Rb
T3(Ra Sa) Tz(Rb Sa))

Tsummary(Ra ’ Rb ’ Sa)

Summary task goes through _—"

normal dependence analysis o .
Postcondition: R2 and S2 become valid

15

Graph Calculus

o Simple graph construction language

o Useeventsthatsignity termination of operations

o Syntax: cu= e :=op(op,er) | ¢ :=merge(e;) | e:= fence | c;c
op waits until ez is e istriggered issue a fence that
signaled and triggers wheney,...,¢e, signalse
e; when it’s done are

Z
SO S
e

16

Trace Recording Example

Task Task graph
T1(R2) (_Ti(re))
([TiRe) F—{ R R)
T2(RP, S?3) l
(Tz(Rb,Sa))
([TiR) }—{ R o R0)
T3(R2,S?) l l
(T3(Ra,52) J—{ Ta(R®,52))
Insert summary task

Command

Recording state

fence

op(T1(R3), e1) Ti(R?) = &

Ra — Rb = g3
T2(RP,S3) = eq4

op(Ra = Rb, e3)
op(T2(Rb,S2), e3)

merge(ez, es, es)

op(T3(R?,52), es) T3(R2,S2) = e

Pre: Ra
20ost: R3, Sa

merge(ez, €3, €i, €g)
Op(Tsummary(Ra,Rb:Sa): e7)

17

ldempotent Recordings

e When the postcondition subsumes the precondition

Task graph G: . N o
o Optimization: precondition check elision
(T1(R?))—{ Ra — Rb) (when the same trace repeatedly appears)
(T?’(Ra’sa)) (TZ(Rb’Sa)) (Check pre. = Replay = Apply post.)"

l

(Teummary(R2,RE, S2)) ‘

Precondition: R2 is valid

Check pre. = (Replay)"— Apply post.
Postcondition: R? and S@ become valid

— Precondition is satisfied immediately after

postcondition is applied
18

Fence Elision

e We canremove summary tasks and fences when we replay the same trace repeatedly

(T1(R3))_,(Ra — Rb) (T1(R?))—»(Ra — Rb)
:
(T3(Ra Sa)}f(Tz(Rb Sa) Unnecessary because we (T3(Ra,sa)}7(Tz(Rb,Sa))
!

know the previous trace

(Ts s (R, 5) (88) (ne) J—(re—re)
‘ (T3(Ra,Sa)}7(Tz(Rb,Sa))
l

[Ti(Re)]—»(Ra — Rb
'
(T3(Ra , Sa)}f(Tz(Rb, Sa)) Summary task is still
I

needed when exiting l

ted repl
(Tsummary(Ra,Rb,Sa))—’ ¢ o repeated replays [T mmmmmm y(Ra,Rb,Sa)]

19

Experiment Results

o Implemented dynamic tracingin Legion
e Measure strong scaling performance of five Legion applications
e Varying complexity (from 9-point stencil to multi-physics solver)
o Already optimized for weak scaling performance’
e Machine: Piz Daint (Cray XC50, Xeon E5-2690 with 12 cores & 64 GB memory per node)

e Compare with MPI references for Stencil, MiniAero, and PENNANT

T E. Slaughter, W. Lee, S. Treichler, W. Zhang, M. Bauer, G. Shipman, P. McCormick, and A. Aiken, “Control replication: Compiling implicit parallelism to efficient SPMD with logical regions,” SC’17 20

Strong Scaling Performance

Stencil (0.4B Cells, Piz Daint) PENNANT (29M Zones, Piz Daint) MiniAero (1M Cells, Piz Daint)
p 28_ 28
28
/ 27_
-I:—; 27 § 45 4:-,5 26
c = 26- 5
5 26 (S o
)))
2 5. (: 2 2% 2 2%
e e e
= = , =
T 24 ()/ 5 2 o
~ / N (" N 2
T 2 ¢ 5 2 s %]
S 7 c .)/ e
= 2° & —)- Legion (Tracing) = 2 —)- Legion (Tracing) 2 —)- Legion (Tracing)
51 ‘/ —@- Legion (No Tracing) 21 ¢ —@- Legion (No Tracing) 271 —@- Legion (No Tracing)
/‘ MPI / MPI MPI+Kokkos
20 £ 20_
\ U D > '\6 4l o '\,’7«% ’7/66 \ U D o) '\6 4l o '\,’7«% ’7/66 \ U D > '\6 ez o '\,’7«% ’7«66
Nodes Nodes Nodes
Dynamic time stepping
Tracesize /node 47 blocks runtime analysis 121 210
every iteration —
Improvement 4.2X 2.8X 5.1X
DT / MP] 82% 79% 212%

/ Legion version uses

Legion spares 3 cores for runtime a better data layout .

N N N
o ~ ™

N
ul

N
w

Normalized Throughput
N 5

Trace size / node

Improvement

Strong Scaling Performance

Circuit (74K Wires, Piz Daint)

—@- Tracing
~®— No Tracing

N N N
o ~ ®

N
ul

N
w

Normalized Throughput
N N

Soleil-X (8.4M Cells, Piz Daint)

—@- Tracing
~®— No Tracing

22

Conclusion

o Dynamic tracing brings performance of explicit task graph construction to dynamic task-
based runtimes

o Strongscaling performance is improved by 4.9X on average
e Feelfreeto try out Dynamic Tracing!

o Checked into the Legion repository: https://github.com/StanfordlLegion/legion

o Experiment scripts are here: https://gitlab.com/StanfordlLegion/legion/tree/tracing-sc18

23

https://github.com/StanfordLegion/legion
https://gitlab.com/StanfordLegion/legion/tree/tracing-sc18

This research was supported by the

Acknowledgment

(17-SC-20-SC), a collaborative effort of the U.S.

-
AC

CC

ergy Office of Science
ministration, award D

and the National Nuc
--NA0002373-1 from t

-xascale Computing Project

Department of
ear Security

ne Department of

-nergy National Nuclear Security Administration, NSF grant
--1160904, an internship at NVIDIA Research, and a grant from

the Swiss National Supercomputing Centre (CSCS) under project

1D

ag0.

24

Questions?

Programming Model

e Traces are annotated in programs

o Places where tracing is beneficial are often obvious

e Findingsuch placesisimportant, but an orthogonal issue

task T(x,y) writes(x),reads(y)
task U(x,y) reads(x), reads(y)

while (*):
begin_trace
T(A,B); T(C,D)
UCA,D); U(C,B)
end trace

26

Optimizing Graph Calculus Commands

e Two standard optimizations: transitive reduction and copy propagation

e Theoverheadisamortized by repeated replays

e;1 := fence e;1 := fence

e; := op(T1(R3), e1) e; := op(Ti(R3), e1)

es := op(Ra = Rb, e)) es := op(Ra = Rb, e))

es := op(T2(RP,S2), e3) es := op(T2(RP,S2), e3)

es := merge(ez, es, es) »

es := op(T3(R2,S23), es) es := op(T3(R2,52), es)

e; := merge(ez, e3, es, €5)

es := Op(Tsummary(R3,RP,S3), e7) eg := Op(Tsummary(R3,RP,S3), e¢)

217

Parallel Replays

o Trace replay can be a bottleneck if the traceis long

e We can parallelize trace replay by slicing the trace

€, :— event;
Original trace: SN\
er ;= op(A,e1); — Slice 1: Slice 2:
es := op(B, ez); er ;= op(A,eq); es:=op(B,er);

)
trigger(es, et);

Extended graph calculus c::=---| e := event | trigger(e,e)

o Balanced slicing uses the implicit knowledge encoded in the application’s mapping

28

Effect of Idempotent Trace Optimizations

Stencil (0.4B Cells, Piz Daint)

N N N
o ~ ©

(6]
1

Normalized Throughput

N N N N N
) N w IS

-@- Opt.
~®- No Opt.

R T R O PN o

Nodes

Soleil-X (8.4M Cells, Piz Daint)

N
o

(6]
1

Normalized Throughput

N N N N N
_ w IS

N
o

Nodes

N
o

Normalized Throughput

N
o

PENNANT (29M Zones, Piz Daint)

(6]
1

N N N N N
= N w &

~@- Opt.
~@—- No Opt.

L R L LN oS

Nodes

N
o

Normalized Throughput

N
o

MiniAero (1M Cells, Piz Daint)

(6]
1

N N N N N
= N w &

N
o

Normalized Throughput

N
o

Circuit (74K Wires, Piz Daint)

ul
1

N N N N N
= N w N

~@- Opt.
—@—- No Opt.

L T L L N LA

Nodes

e |ldempotent trace optimizations improve performance by an average of
5% and a maximum of 19%

o Fence elision removes spurious task dependencies, thereby improving
performance considerably

o No benefit on Circuit as it has all-to-all task dependencies on each node

29

Average Task Granularity

MiniAero Soleil-X
Ir. No'lr. 1. No Tr.
Num. tasks per processor 36 56
Min. time per iteration 6.6ms 33.8ms | 23.1ms 161.2ms
Avg. task granularity 183us 940us | 413us 2,879us

e Achieves sub-millisecond task granularity with dynamic tracing

e Soleil-X tasks take twice more steps on average per replay than MiniAero tasks

30

Tracing Overhead

Task graph for benchmarking Trace replay overhead per task

—e—] thread (N = 11) —m— 2 threads (N = 10)
—o— 3 threads (N = 9) —— 4 threads (N = 8)

S
[F(afo])—>(F(a[0])}— - —>[F(a[0]) B
F(a[1])—FA[)}— - —[F(a[1]) NI L
F(Al — 1])FAN — 1])b> - >[F(AlN — 1))) R

Trace Size (S - N)

e Using more runtime threads has diminishing return

e Longer traces better amortize the replay overhead

31

Tracing Overhead

Stencil Circuit PENNANT MiniAero Soleil-X

No Tracing 2.23 10.29 10.47 4.99 19.41
Tracing 0.29 0.53 0.86 0.68 2.26
Improv. 7.6x 19.5X% 12.2% 7.4% 3.6 X

Trace size 47 76 121 210 344

Trace opt. 0.72 1.70 3.90 1.75 5.86

TABLE 1V: Runtime overhead per trace (all in milliseconds)

32

