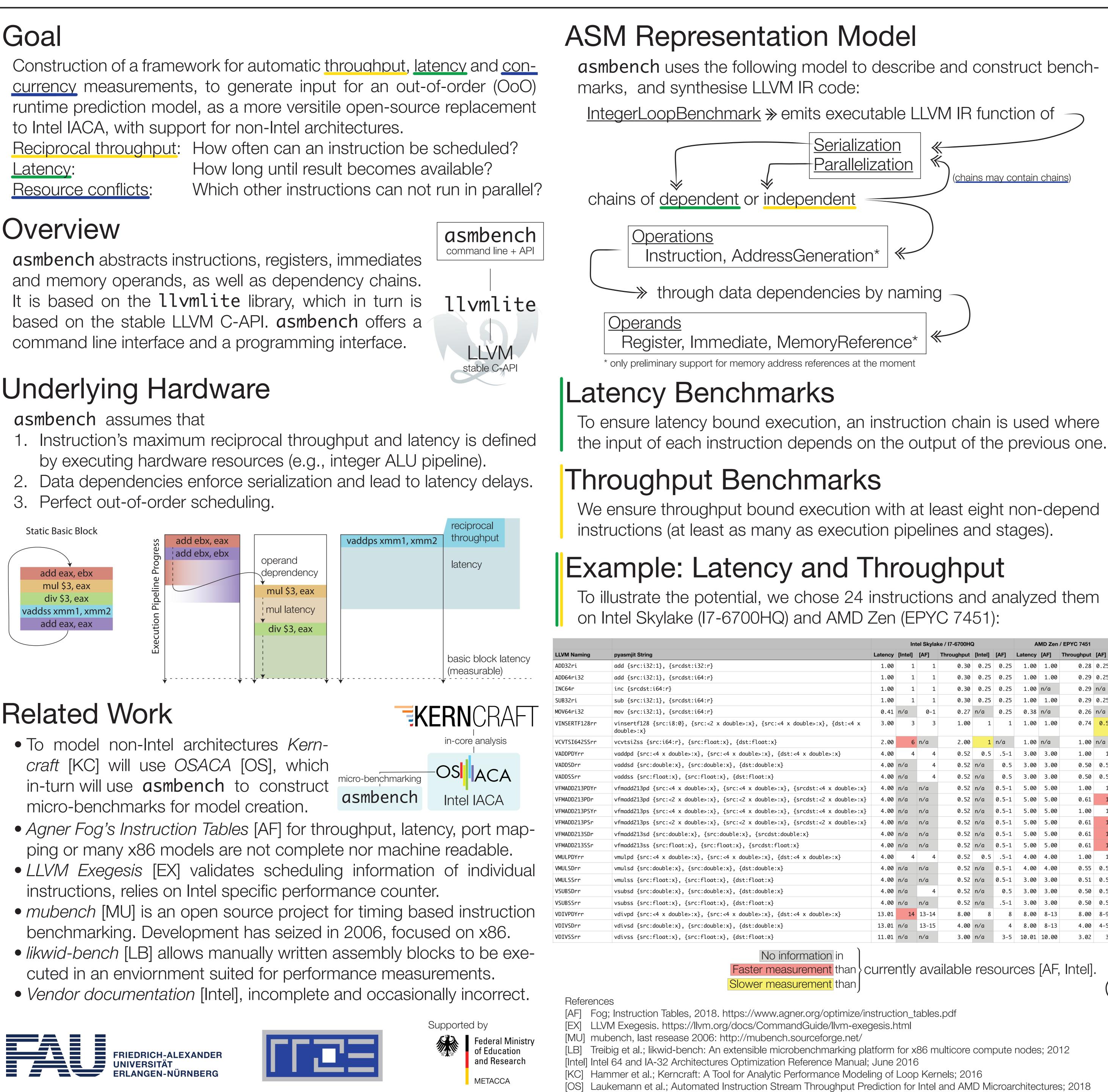
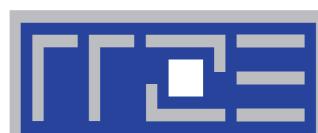
OoO Instruction Benchmarking Framework on the Back of Dragons



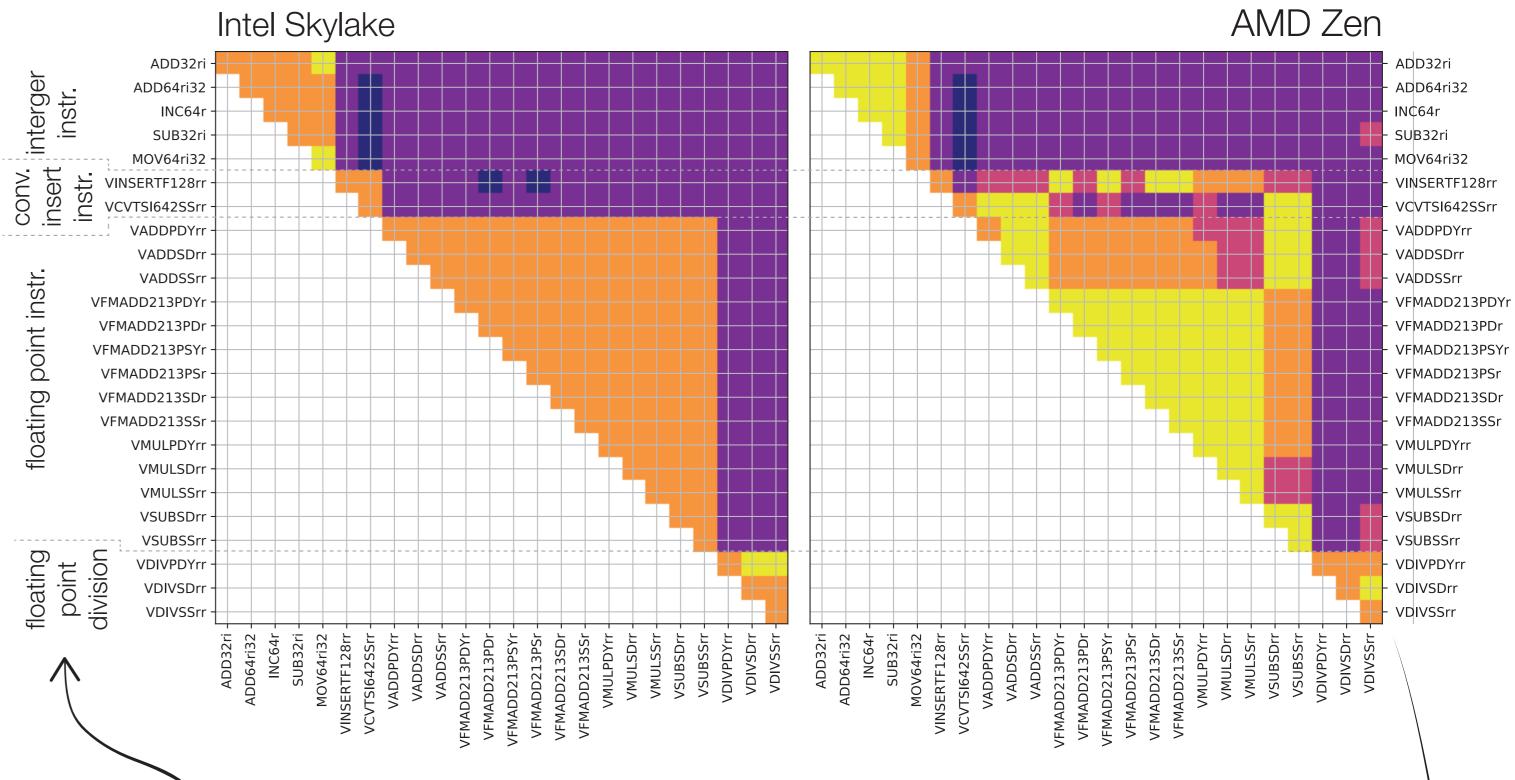
Artifact Available git.io/fANPW

Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Regionales Rechenzentrum Erlangen (RRZE) Julian Hammer <julian.hammer@fau.de>, Georg Hager (advisor) <georg.hager@fau.de>, Gerhard Wellein (advisor) <gerhard.wellein@fau.de>


Goal

Overview

Related Work



	Int	el Skylal	ke / 17-6700H0	AMD Zen / EPYC 7451					
,	[Intel]	[AF]	Throughput	[Intel]	[AF]	Latency	[AF]	Throughput	[AF]
)	1	1	0.30	0.25	0.25	1.00	1.00	0.28	0.25
)	1	1	0.30	0.25	0.25	1.00	1.00	0.29	0.25
)	1	1	0.30	0.25	0.25	1.00	n/a	0.29	n/a
)	1	1	0.30	0.25	0.25	1.00	1.00	0.29	0.25
	n/a	0-1	0.27	n/a	0.25	0.38	n/a	0.26	n/a
)	3	3	1.00	1	1	1.00	1.00	0.74	0.5
	6	n/a	2.00	1	n/a	1.00	n/a	1.00	n/a
	4	4	0.52	0.5	.5-1	3.00	3.00	1.00	1
	n/a	4	0.52	n/a	0.5	3.00	3.00	0.50	0.5
	n/a	4	0.52	n/a	0.5	3.00	3.00	0.50	0.5
	n/a	n/a	0.52	n/a	0.5-1	5.00	5.00	1.00	1
	n/a	n/a	0.52	n/a	0.5-1	5.00	5.00	0.61	1
	n/a	n/a	0.52	n/a	0.5-1	5.00	5.00	1.00	1
)	n/a	n/a	0.52	n/a	0.5-1	5.00	5.00	0.61	1
	n/a	n/a	0.52	n/a	0.5-1	5.00	5.00	0.61	1
	n/a	n/a	0.52	n/a	0.5-1	5.00	5.00	0.61	1
	4	4	0.52	0.5	.5-1	4.00	4.00	1.00	1
	n/a	n/a	0.52	n/a	0.5-1	4.00	4.00	0.55	0.5
	n/a	n/a	0.52	n/a	0.5-1	3.00	3.00	0.51	0.5
	n/a	4	0.52	n/a	0.5	3.00	3.00	0.50	0.5
	n/a	n/a	0.52	n/a	.5-1	3.00	3.00	0.50	0.5
	14	13-14	8.00	8	8	8.00	8-13	8.00	8-9
	n/a	13-15	4.00	n/a	4	8.00	8-13	4.00	4-5
	n/a	n/a	3.00	n/a	3-5	10.01	10.00	3.02	3

Resource Conflicts

To quantify the overlap of two distinct instructions, we use the following metric, with the reciprocal throughput of A as $TP^{-1}(A)$:

$$\frac{\mathrm{TP}^{-1}(A+B) - \max(\mathrm{TP}^{-1}(A), \mathrm{TP}^{-1}(B))}{\min(\mathrm{TP}^{-1}(A), \mathrm{TP}^{-1}(B))} = \begin{cases} \gg 1 & \text{additional overhead} \\ \approx 1 & \text{no overlap conflict} \\ \approx 0 & \text{complete overlap} \\ \ll 0 & \text{elimination} \end{cases}$$

Four (instruction groups) form: integer, convert and insert, floating point (FP) and FP divisions. Each group overlaps with the others, but shows no overlap within. This is the basis for a concurrency model.

Load and Store in L1

Load latency and throughput behaviour is studied with pointer chasing. Both AMD Zen and Intel Skylake show a latency of 2 and reciprocal throughput of 0.5 cycles. Stores are work-in-progress, since they are mostly "fire-and-forget", but occupy shared resources in the address generation units.

ISA Extraction

We parse LLVM's TableGen database to extract available instructions of an instruction set architecture (ISA). This works well for x86, but will require some adaptations for other architectures.

Future Work

- More flexible instruction serialization
- Combined load and instruction benchmarking
- Store benchmarks
- Parallel benchmarking for higher throughput

>Try It Yourself

Disable frequency scaling and turbo mode, then run:

\$ python3 -m asmbench.sc18src

Released under AGPLv3 github.com/RRZE-HPC/asmbench

• Support for other instruction set architectures (i.e., ARM, Power8)

```
$ pip3 install --user asmbench[sc18src]==0.1.2
```