
Federal Ministry
of Education
and Research

Supported by

METACCA

OoO Instruction Benchmarking Framework on the Back of Dragons
Released under AGPLv3

github.com/RRZE-HPC/asmbench
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Regionales Rechenzentrum Erlangen (RRZE)

Julian Hammer <julian.hammer@fau.de>, Georg Hager (advisor) <georg.hager@fau.de>, Gerhard Wellein (advisor) <gerhard.wellein@fau.de>

Goal
Construction of a framework for automatic throughput, latency and con-
currency measurements, to generate input for an out-of-order (OoO)
runtime prediction model, as a more versitile open-source replacement
to Intel IACA, with support for non-Intel architectures.
Reciprocal throughput: How often can an instruction be scheduled?
Latency: How long until result becomes available?
Resource con�icts: Which other instructions can not run in parallel?

Load latency and throughput behaviour is studied with pointer chas-
ing. Both AMD Zen and Intel Skylake show a latency of 2 and recip-
rocal throughput of 0.5 cycles.
Stores are work-in-progress, since they are mostly “�re-and-forget”,
but occupy shared resources in the address generation units.

Load and Store in L1

We parse LLVM’s TableGen database to extract available instruc-
tions of an instruction set architecture (ISA). This works well for x86,
but will require some adaptations for other architectures.

ISA Extraction

• Support for other instruction set architectures (i.e., ARM, Power8)
• More �exible instruction serialization
• Combined load and instruction benchmarking
• Store benchmarks
• Parallel benchmarking for higher throughput

Future Work
• Agner Fog’s Instruction Tables [AF] for throughput, latency, port map-
 ping or many x86 models are not complete nor machine readable.
• LLVM Exegesis [EX] validates scheduling information of individual
 instructions, relies on Intel speci�c performance counter.
• mubench [MU] is an open source project for timing based instruction
 benchmarking. Development has seized in 2006, focused on x86.
• likwid-bench [LB] allows manually written assembly blocks to be exe-
 cuted in an enviornment suited for performance measurements.
• Vendor documentation [Intel], incomplete and occasionally incorrect.

• To model non-Intel architectures Kern-
 craft [KC] will use OSACA [OS], which
 in-turn will use asmbench to construct
 micro-benchmarks for model creation.

Related Work

References
[AF] Fog; Instruction Tables, 2018. https://www.agner.org/optimize/instruction_tables.pdf
[EX] LLVM Exegesis. https://llvm.org/docs/CommandGuide/llvm-exegesis.html
[MU] mubench, last resease 2006: http://mubench.sourceforge.net/
[LB] Treibig et al.; likwid-bench: An extensible microbenchmarking platform for x86 multicore compute nodes; 2012
[Intel] Intel 64 and IA-32 Architectures Optimization Reference Manual; June 2016
[KC] Hammer et al.; Kerncraft: A Tool for Analytic Performance Modeling of Loop Kernels; 2016
[OS] Laukemann et al.; Automated Instruction Stream Throughput Prediction for Intel and AMD Microarchitectures; 2018

Overview
asmbench abstracts instructions, registers, immediates
and memory operands, as well as dependency chains.
It is based on the llvmlite library, which in turn is
based on the stable LLVM C-API. asmbench offers a
command line interface and a programming interface.

asmbench
command line + API

llvmlite

LLVM
stable C-API

asmbench assumes that
1. Instruction’s maximum reciprocal throughput and latency is de�ned
 by executing hardware resources (e.g., integer ALU pipeline).
2. Data dependencies enforce serialization and lead to latency delays.
3. Perfect out-of-order scheduling.

Underlying Hardware

add eax, ebx
mul $3, eax
div $3, eax

vaddss xmm1, xmm2
add eax, eax

Static Basic Block
add ebx, eax

mul $3, eax

div $3, eax

add ebx, ebx

Ex
ec

ut
io

n
Pi

pe
lin

e
Pr

og
re

ss vaddps xmm1, xmm2
reciprocal
throughput

basic block latency
(measurable)

operand
deprendency

latency

mul latency

Disable frequency scaling and turbo mode, then run:
$ pip3 install --user asmbench[sc18src]==0.1.2
$ python3 -m asmbench.sc18src

To ensure latency bound execution, an instruction chain is used where
the input of each instruction depends on the output of the previous one.

Latency Benchmarks

To illustrate the potential, we chose 24 instructions and analyzed them
on Intel Skylake (I7-6700HQ) and AMD Zen (EPYC 7451):

Example: Latency and Throughput

Intel Skylake / I7-6700HQ AMD Zen / EPYC 7451

LLVM Naming pyasmjit String Latency [Intel] [AF] Throughput [Intel] [AF] Latency [AF] Throughput [AF]

ADD32ri add {src:i32:1}, {srcdst:i32:r} 1.00 1 1 0.30 0.25 0.25 1.00 1.00 0.28 0.25

ADD64ri32 add {src:i32:1}, {srcdst:i64:r} 1.00 1 1 0.30 0.25 0.25 1.00 1.00 0.29 0.25

INC64r inc {srcdst:i64:r} 1.00 1 1 0.30 0.25 0.25 1.00 n/a 0.29 n/a

SUB32ri sub {src:i32:1}, {srcdst:i64:r} 1.00 1 1 0.30 0.25 0.25 1.00 1.00 0.29 0.25

MOV64ri32 mov {src:i32:1}, {srcdst:i64:r} 0.41 n/a 0-1 0.27 n/a 0.25 0.38 n/a 0.26 n/a

VINSERTF128rr vinsertf128 {src:i8:0}, {src:<2 x double>:x}, {src:<4 x double>:x}, {dst:<4 x
double>:x}

3.00 3 3 1.00 1 1 1.00 1.00 0.74 0.5

VCVTSI642SSrr vcvtsi2ss {src:i64:r}, {src:float:x}, {dst:float:x} 2.00 6 n/a 2.00 1 n/a 1.00 n/a 1.00 n/a

VADDPDYrr vaddpd {src:<4 x double>:x}, {src:<4 x double>:x}, {dst:<4 x double>:x} 4.00 4 4 0.52 0.5 .5-1 3.00 3.00 1.00 1

VADDSDrr vaddsd {src:double:x}, {src:double:x}, {dst:double:x} 4.00 n/a 4 0.52 n/a 0.5 3.00 3.00 0.50 0.5

VADDSSrr vaddss {src:float:x}, {src:float:x}, {dst:float:x} 4.00 n/a 4 0.52 n/a 0.5 3.00 3.00 0.50 0.5

VFMADD213PDYr vfmadd213pd {src:<4 x double>:x}, {src:<4 x double>:x}, {srcdst:<4 x double>:x} 4.00 n/a n/a 0.52 n/a 0.5-1 5.00 5.00 1.00 1

VFMADD213PDr vfmadd213pd {src:<2 x double>:x}, {src:<2 x double>:x}, {srcdst:<2 x double>:x} 4.00 n/a n/a 0.52 n/a 0.5-1 5.00 5.00 0.61 1

VFMADD213PSYr vfmadd213ps {src:<4 x double>:x}, {src:<4 x double>:x}, {srcdst:<4 x double>:x} 4.00 n/a n/a 0.52 n/a 0.5-1 5.00 5.00 1.00 1

VFMADD213PSr vfmadd213ps {src:<2 x double>:x}, {src:<2 x double>:x}, {srcdst:<2 x double>:x} 4.00 n/a n/a 0.52 n/a 0.5-1 5.00 5.00 0.61 1

VFMADD213SDr vfmadd213sd {src:double:x}, {src:double:x}, {srcdst:double:x} 4.00 n/a n/a 0.52 n/a 0.5-1 5.00 5.00 0.61 1

VFMADD213SSr vfmadd213ss {src:float:x}, {src:float:x}, {srcdst:float:x} 4.00 n/a n/a 0.52 n/a 0.5-1 5.00 5.00 0.61 1

VMULPDYrr vmulpd {src:<4 x double>:x}, {src:<4 x double>:x}, {dst:<4 x double>:x} 4.00 4 4 0.52 0.5 .5-1 4.00 4.00 1.00 1

VMULSDrr vmulsd {src:double:x}, {src:double:x}, {dst:double:x} 4.00 n/a n/a 0.52 n/a 0.5-1 4.00 4.00 0.55 0.5

VMULSSrr vmulss {src:float:x}, {src:float:x}, {dst:float:x} 4.00 n/a n/a 0.52 n/a 0.5-1 3.00 3.00 0.51 0.5

VSUBSDrr vsubsd {src:double:x}, {src:double:x}, {dst:double:x} 4.00 n/a 4 0.52 n/a 0.5 3.00 3.00 0.50 0.5

VSUBSSrr vsubss {src:float:x}, {src:float:x}, {dst:float:x} 4.00 n/a n/a 0.52 n/a .5-1 3.00 3.00 0.50 0.5

VDIVPDYrr vdivpd {src:<4 x double>:x}, {src:<4 x double>:x}, {dst:<4 x double>:x} 13.01 14 13-14 8.00 8 8 8.00 8-13 8.00 8-9

VDIVSDrr vdivsd {src:double:x}, {src:double:x}, {dst:double:x} 13.01 n/a 13-15 4.00 n/a 4 8.00 8-13 4.00 4-5

VDIVSSrr vdivss {src:float:x}, {src:float:x}, {dst:float:x} 11.01 n/a n/a 3.00 n/a 3-5 10.01 10.00 3.02 3

No information in

Slower measurement than
Faster measurement than currently available resources [AF, Intel].

We ensure throughput bound execution with at least eight non-depend
instructions (at least as many as execution pipelines and stages).

Throughput Benchmarks

To quantify the overlap of two distinct instructions, we use the following
metric, with the reciprocal throughput of as :

Resource Con�icts

Four instruction groups form: integer, convert and insert, �oating
point (FP) and FP divisions. Each group overlaps with the others, but
shows no overlap within. This is the basis for a concurrency model.

Intel Skylake AMD Zen

in
te

rg
er

in
st

r.

co
nv

.
in

se
rt

in
st

r.

�o
at

in
g

po
in

t i
ns

tr.
�o

at
in

g
po

in
t

di
vi

si
on

Try It Yourself

asmbench Intel IACA

in-core analysis

micro-benchmarking

asmbench uses the following model to describe and construct bench-
marks, and synthesise LLVM IR code:

ASM Representation Model

* only preliminary support for memory address references at the moment

IntegerLoopBenchmark

through data dependencies by naming

chains of dependent or independent
(chains may contain chains)

emits executable LLVM IR function of

Operations
Instruction, AddressGeneration*

Operands
Register, Immediate, MemoryReference*

Serialization
Parallelization

Artifact Available
git.io/fANPW

