
METHOD

The method for monitoring implemented by
this work is to capture information, collect
information, and then visualize the
information. For capturing workflow status,
information about the task state is aggregated and
then logged to an Elasticsearch database at state
transitions. To monitor a task’s resource usage, a
process is spawned when a task is started which
periodically checks the resource usage of its parent
process - the task’s python process. This information
is also logged to the Elasticsearch database. Once
this information is centralized in the database, it is
visualized by a connected Kibana instance. These
visualizations are created using Kibana’s tools to
aggregate and filter the data before presenting it to
the user in a dashboard. To allow users to set up
individual instances, Parsl provides saved Kibana
objects and a script that will create the necessary
Elasticsearch templates.

ABSTRACT

As a workflow software, Parsl provides users the
ability to define complex workflows in simple Python to
be executed in parallel on any computer system. One
useful feature that Parsl lacked was convenient
workflow monitoring. This project set out to add
workflow monitoring to Parsl as to enhance its feature
set. Simple and comprehensive monitoring of a
workflows state and resource usage provides users
value by allowing auditing, debugging, and
confirmation of workflow execution. The work
discusses the components of workflows that are
monitored by Parsl, the strategy for capturing these
components, and the tools used to accumulate and
display these components. Primarily, this project used
python libraries to collect task status and resource
usage and log these tasks to an Elasticsearch
database - a flexible and searchable indexing
database. A Kibana dashboard - a tool for visualizing
data stored in an Elasticsearch database - was then
created to visualize the collected logs in a realtime and
interactive user interface (UI). In the end, the newer
versions of Parsl will allow users the option to monitor
the status and resource usage of their workflows via
an Elasticsearch database and Kibana dashboard.

EXAMPLE
import parsl
from parsl import *

threads_config = parsl.config.Config(
executors=[parsl.executors.threads.ThreadPoolExecutor(label='threads',

max_threads=4)], db_logger_config={'enable_es_logging': True, 'enable_remote_monitoring':
True})

dfk = DataFlowKernel(config=threads_config)

@App('bash', dfk)
def cpu_stress_fail(workers=1, timeout=10, inputs=[], stdout='stdout_for_fail.txt',
stderr='stderr_for_fail.txt'):
 raise AssertionError("Just an Error")
 return "stress --cpu {workers} --timeout {timeout}"

@App('bash', dfk)
def cpu_stress(workers=1, timeout=10, inputs=[], outputs=['out.txt']):
 return "stress --cpu {} --timeout {} > {}".format(timeout, workers, outputs[0])

@App('bash', dfk)
def mem_stress(workers=1, mem_size=1, timeout=10, inputs=[]):
 return "stress --vm {workers} --vm-bytes {mem_size}G --vm-keep --timeout {timeout}"

@App('bash', dfk)
def io_stress(workers=1, timeout=10, inputs=[]):
 return "stress --io {workers} --timeout {timeout}"

@App('bash', dfk)
def hdd_stress(workers=1, hdd_size=1, timeout=10, inputs=[]):
 return "stress -d {workers} --hdd-bytes {hdd_size}G --timeout {timeout}".format(workers=workers,
hdd_size=hdd_size, timeout=timeout)

if __name__ == "__main__":
 MAXTIMEOUT=10
 from random import random
 a1,b1,c1 = [cpu_stress(workers=1, timeout=random() * MAXTIMEOUT, outputs=['out.txt']),
 mem_stress(workers=1, timeout=random() * MAXTIMEOUT, mem_size=1),
 cpu_stress(workers=1, timeout=random() * MAXTIMEOUT)]
 a1.result()
 b1.result()
 c1.result()

 dfk.cleanup()

Connor Pigg*, Anna Woodard°, Yadu Babuji°, Kyle Chard°, and Daniel S. Katz*
*University of Illinois at Urbana-Champaign, °University of Chicagp

Monitoring Parsl Workflows

REFERENCE
Yadu Babuji, Alison Brizius, Kyle Chard, Ian Foster, Daniel S. Katz,
Michael Wilde, and Justin Wozniak. Introducing Parsl: A Python
Parallel Scripting Library, August 2017.

INTRODUCTION

Modern scientific practices increasingly incorporate
computational elements into their processes. For
computational science, these elements almost entirely
comprise any given process. The consistent increase
in the significance and abundance of computational
elements drives the development of computational
tools.

One such tool for the modern scientist is workflow
software. This software allows the definition and
execution of a series of computational elements.

Benefits of workflow software:

● Automating their task execution
● Documenting steps taken in their process
● Plus additional features!

CONCLUSIONS

Monitoring has been added to Parsl. This monitoring
collects and presents actionable informations to users.
The information is generated from arbitrary and
distributed sources. It is then collected to a central space
before being visualized. This visual dashboard is made
available to users and is independent of both user and
data source allowing great flexibility. This effective and
simple implementation relied heavily on the chosen tools.

3. Task Status

4. Resource Usage

5. Summary Statistics

2. Workflow Overview

1. Filtering

DASHBOARD

Parsl features:

● Implicit parallelization of task execution
● Intermediate result caching
● Resource agnostic
● Simple workflow definition
● Workflow Monitoring

Significance:

● Debugging erroneous workflows
● Auditing the execution and resource usage of

tasks
● Confirm the status of running workflows

Dashboard Features:

1. Workflow, time, and task filtering
2. Workflow overview
3. Task status
4. Resource usage
5. Summary statistics
6. Live monitoring

