Monitoring Parsl Workflows
Connor Pigg*, Anna Woodard®, Yadu Babuji°, Kyle Chard®, and Daniel S. Katz*

*University of Illinois at Urbana-Champaign, °University of Chicagp

ABSTRACT

As a workflow software, Parsl provides users the
ability to define complex workflows in simple Python to
be executed in parallel on any computer system. One
useful feature that Parsl lacked was convenient
workflow monitoring. This project set out to add
workflow monitoring to Parsl as to enhance its feature
set. Simple and comprehensive monitoring of a
workflows state and resource usage provides users
value by allowing auditing, debugging, and
confirmation of workflow execution. The work
discusses the components of workflows that are
monitored by Parsl, the strategy for capturing these
components, and the tools used to accumulate and
display these components. Primarily, this project used
python libraries to collect task status and resource
usage and log these tasks to an Elasticsearch
database - a flexible and searchable indexing
database. A Kibana dashboard - a tool for visualizing
data stored in an Elasticsearch database - was then
created to visualize the collected logs in a realtime and
interactive user interface (Ul). In the end, the newer
versions of Parsl| will allow users the option to monitor
the status and resource usage of their workflows via
an Elasticsearch database and Kibana dashboard.

INTRODUCTION

Modern scientific practices increasingly incorporate
computational elements into their processes. For
computational science, these elements almost entirely
comprise any given process. The consistent increase
in the significance and abundance of computational
elements drives the development of computational
tools.

One such tool for the modern scientist is workflow
software. This software allows the definition and
execution of a series of computational elements.

Benefits of workflow software:

e Automating their task execution
e Documenting steps taken in their process
e Plus additional features!

METHOD

The method for monitoring implemented by
this work is to capture information, collect
information, and then visualize the
information. For capturing workflow status,
information about the task state is aggregated and
then logged to an Elasticsearch database at state
transitions. To monitor a task’s resource usage, a
process is spawned when a task is started which
periodically checks the resource usage of its parent
process - the task’s python process. This information
is also logged to the Elasticsearch database. Once
this information is centralized in the database, it is
visualized by a connected Kibana instance. These
visualizations are created using Kibana’s tools to
aggregate and filter the data before presenting it to
the user in a dashboard. To allow users to set up
individual instances, Parsl provides saved Kibana
objects and a script that will create the necessary
Elasticsearch templates.

DASHBOARD

Parsl features:

Implicit parallelization of task execution
Intermediate result caching

Resource agnostic

Simple workflow definition

Workflow Monitoring

Significance:

Debugging erroneous workflows

Auditing the execution and resource usage of
tasks

Confirm the status of running workflows

Dashboard Features:

Workflow, time, and task filtering
Workflow overview

Task status

Resource usage

Summary statistics

Live monitoring

Dashboard / Draft Dashboard 3

1. Filtering

Parsl Monitoring

This dashboard provides default information about the status of a selected workflow and the tasks that make up

stressorlocal.py-4 ubvm-16 cpigg2 1.0.0

LLLLLL me

that workflow. The provided controls may be used to interact with the dashboard.

The workflow card provides basic information about the workflow as a whole. Detailed information about tasks
are provided below.

This dashboard is customizable and information about creating and customizing Kibana dashboards is readily
available online. The discover utility will provide information about the type of logging information available.

PS: The filtering is used to ensure the correct information is being shown. For instance, without filtering the Task
vs Time graph will show all task activity unlike the cards which default to the most recent task activity. The Task
Failures card will only show tasks that have failed and will thus be empty if no tasks have failed,

2018-07-19 13:04:01 None

Time Completed

2. Workflow Overview

To select a specific run, click Add a filter

select is and then enter the runid for the workflow of interest.

/home/cpiggZ/SHI&E}F{R@!’ARSL/Wninfol308

oach and these filters will apply to all visualizations on the dashboard.

in the upper left then choose field name of task_run_id.keyword

Be sure this runid occurs in the selected time period found in the upper right. More filtering may be done using
a similar appr

Time Started - Time Completed -
2018-07-19 13:05:29
2018-07-19 13:05:29
2018-07-19 13:05:29 2018-07-1913:08:01
2018-07-19 13:05:29 2018-07-1913:07:17
2018-07-1913:05:29 2018-07-19 13:08:56
2018-07-19 13:05:29 2018-07-19 13:09:56

2018-07-19 13:04:02 2018-07-19 13:05:29

" o 2 & 6 e & 5 0o L

o & & & & & & o o

o o o (=% {=9 o [=9 o o w

R A A S A
"

2018-07-19 13:04:.02 2018-07-1913:04:14

2018-07-19 13:04:01 2018-07-19 13:04:28

First Three Inputs ©

First Three Outputs - Stdout =
stdout_for_fall.txt

Number of User Disk

CPU Memory Childr
(96) = (%)= Proce!

9 0 1.34 7

1.994 9

cpu stress 6049 0 1333 5

Task Name 0 1.976 7

12 24,196 0

Export: Raw & Formatted &

2018-07-19 13:05:29

2018-07-19 13:09:56

Time Completed

To select a specific task, click Add
the task id of interest,

a filter inthe upper left then choose field name of task_id.keyword

en Time(s) System Virtual Memory Resident Memory Reads
s5e5 — Time(s)© Usage (MB)* Usage (MB) - (MB) ©

446 116.61 1,299.199 106.871 17.152
26541 7284 1,956.313 159.055 17.199
86.94 0.4% 1,163,195 106.328 17.027

413 0.31 1,612.301 157.617 17.027

39811 19025 6,031,008 529.87 68,406

4. Resource Usage

Disk Writes Process
(MB) = Status ©

60,854.055 sleeping
50,854.402 sleeping
0.066 sleeping

0.027 sleeping

121,708,551

select is and then enter

Be sure the select time range is correct. More filtering may be done using a similar approach and these filters will apply to all

visualizations on the dashboard.

5. Summary Statistics

1.582

Average CPU percentage average per tas|

14,903.508

ory usage per task (MB)

EXAMPLE

import parsl
from parsl import *

threads_config = parsl.config.Config(
executors=[parsl.executors.threads.ThreadPoolExecutor(label="threads',
max_threads=4)], db_logger_config={'enable_es_logging': True, 'enable_remote_monitoring":
True})

dfk = DataFlowKernel(config=threads_config)

@App('bash’, dfk)
def cpu_stress_fail(workers=1, timeout=10, inputs=[], stdout="stdout_for_fail.txt',
stderr='stderr_for_fail.txt'):

raise AssertionError("Just an Error")

return "stress --cpu {workers} --timeout {timeout}"

@App('bash’, dfk)
def cpu_stress(workers=1, timeout=10, inputs=[], outputs=['out.txt']):
return "stress --cpu {} --timeout {} > {}".format(timeout, workers, outputs[0])

@App('bash’, dfk)
def mem_stress(workers=1, mem_size=1, timeout=10, inputs=[]):
return "stress --vm {workers} --vm-bytes {mem_size}G --vm-keep --timeout {timeout}"

@App('bash’, dfk)
def io_stress(workers=1, timeout=10, inputs=[]):
return "stress --io {workers} --timeout {timeout}"

@App('bash’, dfk)
def hdd_stress(workers=1, hdd_size=1, timeout=10, inputs=[]):

return "stress -d {workers} --hdd-bytes {hdd_size}G --timeout {timeout}".format(workers=workers,
hdd_size=hdd_size, timeout=timeout)

if _name__ =="_main__":

MAXTIMEOUT=10

from random import random

al,bl,cl = [cpu_stress(workers=1, timeout=random() * MAXTIMEOUT, outputs=['out.txt']),
mem_stress(workers=1, timeout=random() * MAXTIMEOUT, mem_size=1),
cpu_stress(workers=1, timeout=random() * MAXTIMEOUT)]

al.result()

b1l.result()

cl.result()

dfk.cleanup()

CONCLUSIONS

Monitoring has been added to Parsl. This monitoring
collects and presents actionable informations to users.
The information is generated from arbitrary and
distributed sources. It is then collected to a central space
before being visualized. This visual dashboard is made
available to users and is independent of both user and
data source allowing great flexibility. This effective and
simple implementation relied heavily on the chosen tools.

REFERENCE

Yadu Babuji, Alison Brizius, Kyle Chard, Ian Foster, Daniel S. Katz,
Michael Wilde, and Justin Wozniak. Introducing Parsl: A Python
Parallel Scripting Library, August 2017.

1, ILLINOIS

