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ABSTRACT
Production HPC clusters endure failures incurring computation and
resource wastage. Despite the presence of various failure detection
and prediction schemes, a comprehensive understanding of how
nodes fail considering various components and layers of the system
is required for sustained resilience. This work performs a holistic
root cause diagnosis of node failures using a measurement-driven
approach on contemporary system logs that can help vendors and
system administrators support exascale resilience.

Our work shows that lead times can be increased by at least 5
times if external subsystem correlations are considered as opposed
to considering the events of a specific node in isolation. Moreover,
when detecting sensor measurement outliers and interconnect re-
lated failures, triggering automated recovery events can exacerbate
the situation if recovery is unsuccessful.

1 INTRODUCTION
Recent research on log mining based failure characterization [6, 7],
prediction [3, 11] and recovery [2] have revealed helpful insights
to address failures in supercomputers. As researchers are designing
energy efficient exascale nodes [14], current computing platforms
require robust failure handlers to keep up with system scale and
density. Proactive fault tolerant solutions [3, 11] when supported by
root cause diagnosis can improve lead times and help in responding
to both manifested or imminent failures effectively.

Our work is novel in that it considers system environment con-
ditions along with inter-component dependencies to increase lead
times to failures enhancing node failure prediction schemes.

2 BACKGROUND AND RELATEDWORK
[8, 9] discuss cases where interconnect failures (lane/link) and over-
heating cause system-wide outages (SWOs), job failures and failures
during recovery. [9] report early indicators of interconnect faults
and SWOs due to overlapping interconnect and filesystem fault
recovery events. Such observations affirm the need for a holis-
tic study to enhance failure prediction schemes [3, 11]. [2, 5, 7]
study spatial/temporal correlations of failures, derive their logical
correlations, and propose dynamic checkpointing schemes (C/R)
after detecting system degradation. Other root cause diagnosis
techniques [4, 10, 12, 16] either point out failure location or per-
form causal dependency analysis without holistic considerations
or are application-centric. In contrast, we incorporate subsystem
dependencies and quantify increase in lead times to node failures.

3 PROBLEM AND MOTIVATION
The current state-of-the-art lacks in the following aspects:
1. The various layers (software [6], hardware [15], application [13])

of these large-scale systems are mostly studied independently with-
out exploiting their correlations during root cause analysis [4].
2. Diverse components of the system affect each other (e.g., intercon-
nect [9], GPU [15], DRAM [1]). Focusing on a specific component in
isolation provides a local view, without having a global perspective.
Over a period of time faults recur or unprecedented events happen
which requires re-investigation, adding unnecessary overhead.
3. Once a failure manifests, corrective actions need to be enhanced.
Prevalent solutions (lazy C/R, migration) may not always improve
resilience. A deeper understanding of how failures happen can aid
in choosing the appropriate action for long-term system health.
This work investigates root causes of node failures considering
software, hardware and application malfunctioning across diverse
components with recommendations for mitigation approaches.

4 APPROACH AND UNIQUENESS
We consider system-wide environmental logs and blade/cabinet
characteristics along with the node-specific internal events during
the unhealthy time frame. We move from node to blade to cabinet to
understand fault conditions and derive early indicators of impend-
ing failures. The controller logs coupled with event router messages
provide deviations (higher/lower than the normal range) in sensor
measurements (e.g., fan speed, temperature) to warn about health
problems. Encompassing such features with node-specific events
aids in holistic root cause analysis and derivation of lead times as
high as 15 minutes. Correlating the state of shared resources with
events internal to nodes help decipher the cause of failures.

5 RESULTS AND CONTRIBUTION
Results suggest that lead times can increase by 10 to 15 minutes
(e.g., 2 mins to 12 mins) considering external subsystem correlations
as opposed to focusing on node-specific events only [3]. The false
positive rate with external correlations is lower compared to the
lead times to failures considering only node-specific events (e.g.,
18.35% to 8.58%). Erroneous patterns do not always cause failures,
they are usually coalesced with additional hardware problems. Pro-
cesses consuming excessive resources cause network errors making
nodes unreachable. Processor interrupts in a single node can ham-
per sensor readings of an entire blade causing the air velocity to be
automatically reduced by the firmware in the cabinet. While not
all node failures can be predicted with significantly increased lead
times, many of them can be flagged ahead of time if external envi-
ronment conditions are diagnosed. These findings hint at potential
actions such as reducing the number of reboots/restarts.

6 CONCLUSION
Accurate holistic root cause diagnosis is an indispensable step to-
ward failure mitigation in practice. Proactive fault tolerant solutions
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with estimated lead times may serve as a short-term cure. Since
the root causes are not fixed, the same failures may recur unless
we clearly understand how node failures happen. Better awareness
has the potential to enhance recovery approaches. Analyzing the
trade-offs of potential actions (proactive/reactive) when a node
failure is imminent can have long-term benefits in lowering the
occurrence of future failures.
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