
Parallel and Scalable Combinatorial String and Graph
Algorithms on Distributed Memory Systems

SC’18 Doctoral Showcase Supplementary File

Patrick Flick
Georgia Institute of Technology

patrick.flick@gatech.edu

Srinivas Aluru
Georgia Institute of Technology

aluru@cc.gatech.edu

ABSTRACT
Methods for processing and analyzing DNA and genomic data are
built upon combinatorial graph and string algorithms. The advent
of high-throughput DNA sequencing is enabling the generation of
billions of reads per experiment. Classical and sequential algorithms
can no longer deal with these growing data sizes - which for the
last 10 years have greatly out-paced advances in processor speeds.
To process and analyze state-of-the-art genomic data sets require
the design of scalable and efficient parallel algorithms and the use
of large computing clusters.

Here, we present our distributed-memory parallel algorithms for
indexing large genomic datasets, including algorithms for construc-
tion of suffix arrays and LCP arrays, solving the All-Nearest-Smaller-
Values problem and its application to the construction of suffix trees.
Our parallel algorithms exhibit superior runtime complexity as well
as practical performance compared to the state-of-the-art. Further-
more, we present our work on distributed-memory algorithms for
clustering de-bruijn graphs and its application to solving a grand
challenge metagenomic dataset.

1 DISTRIBUTED STRING INDEXING
Basics
The Suffix Tree (ST) of a string S is a (compacted) trie of all the
suffixes of S . For a given string S of length n, its Suffix Tree can
be constructed in O(n) time [20]. Once constructed, the Suffix tree
allows identification of all occurrences of a pattern P in S in O(|P |)
time and independent of n, given that the alphabet size is constant.
Since their inception in the early 1970’s, suffix trees have become
the most widely used string indexing structure, with various ap-
plications such as approximate pattern matching, identification of
longest common substrings, finding maximal suffix-prefix overlaps,
data compression, and many more [6].

A Suffix Array (SA) is an array containing the lexicographically
sorted order of all suffixes of a string, and as such, compactly rep-
resents the leafs of a Suffix Tree. Manber and Myers first intro-
duced suffix arrays as a space-efficient alternative to suffix trees
[13], and showed how to use suffix arrays for exact pattern match-
ing in O(|P | logn) time, and when used in conjunction with the
Longest Common Prefix (LCP) array in O(|P | + logn) time, i.e., at
the additional cost of O(logn) compared to suffix trees. Sequential
algorithms for constructing suffix arrays are abundant. Puglisi et
al. give a good survey of the various approaches [17]. Suffix arrays
can also be constructed in linear time. Interestingly, direct linear
time algorithms that avoid suffix trees as an intermediary step were
invented only in 2003 [10, 12].

Suffix arrays are often used in conjunction with Longest Common
Prefix (LCP) arrays. The LCP array simply records the length of the
longest common prefix between every pair of consecutive suffixes
in the suffix array. Abouelhoda et al. showed that suffix arrays
combined with LCP arrays can support a majority of operations
supported by suffix trees [1]. The LCP array can be constructed
either during the construction of the suffix array [10, 13], or from a
given suffix array in linear O(n) time [11].

Motivation
Much recent work on suffix arrays and trees is motivated by their
ubiquitous presence in computational biology applications. The
advent of high-throughput DNA sequencing is generating billions
of short reads per experiment, necessitating the design of parallel
algorithms.

It is particularly challenging to parallelize linear time sequen-
tial algorithms in distributed memory, owing to the difficulty in
designing communication-efficient algorithms that can mask com-
munication time effectively with such low computational cost. Nev-
ertheless, distributed-memory construction of suffix arrays and
trees is an important problem because a) memory issues preclude
sequential construction for large data sets, particularly given the
size of a tree is significantly larger than the original string by an
order of magnitude or more, and b) it is a necessary first step to
parallelize the myriad applications that use suffix arrays or trees.

Contributions
In this work, we present provably and practically efficient dis-
tributed memory algorithms for constructing Suffix Arrays, LCP
arrays, and Suffix Trees. In contrast to most previous work, in
our approach the O(n) input, output, and all working data is fully
distributed and split onto p processors, such that every processor
requires at most O(np) memory. This is particularly important as
most works have focused on parallelizing compute time while as-
suming each processor has a copy of everything, severely limiting
their scalability when used in practice.

Distributed Suffix Array Construction. We present parallel algo-
rithms for distributed memory construction of Suffix Arrays and
Longest Common Prefix (LCP) arrays that simultaneously achieve
good worst-case run-time bounds and superior practical perfor-
mance. We published this work at Supercomputing 2015 [3].

Our algorithm provides a worst case run-time guarantee of
O(Tsor t (n,p) · log(n)) where Tsor t (n,p) is the run-time of paral-
lel sorting. Additionally, our approach constructs the LCP array
alongside the suffix array, also in a fully distributed fashion.

We introduced several algorithm engineering techniques that
improve performance in practice. We provide an efficient, scalable

SC’18, November 2018, Dallas, TX, USA Patrick Flick and Srinivas Aluru

implementation of our algorithm, which constructs the suffix and
LCP arrays of the human genome in 7.3 seconds on 1024 Intel
Xeon cores (64 nodes: 2x Xeon E5-2650, 128 GB RAM, QDR IB). We
reach speedups of over 110× compared to divsufsort [14], the fastest
sequential suffix array construction implementation, commonly
used as comparison [16] [18].

Suffix Tree Construction. Sequentially, the construction of suf-
fix trees takes linear time, and optimal parallel algorithms exist
only for the PRAM model. Recent works mostly target low core-
count shared-memory implementations but achieve suboptimal
complexity, and prior distributed-memory parallel algorithms have
quadratic worst-case complexity. We present a novel, efficient dis-
tributed memory algorithm for constructing the suffix tree for a
string given its suffix array and LCP array in O(np + p) time.

To do so, we introduced a novel generalization of the All-Nearest-
Smaller-Values (ANSV) problem and give an optimal algorithm to
solve this problem in distributed memory, minimizing overall com-
munication volume. Combining this with our work on constructing
suffix arrays [3] results in a parallel algorithm for constructing
the suffix tree from a given input string. Compared to previous
distributed memory algorithms, this yields superior theoretical
complexity as well as practical performance. We demonstrate the
construction of the suffix tree for the human genome given its suf-
fix and LCP arrays in under 2 seconds on 1024 Intel Xeon cores.
Furthermore, we demonstrate that our MPI based implementation
performs better in shared memory than state-of-the-art shared
memory algorithms, and can scale to a large number of cores in
distributed memory. We published this work at IPDPS 2017 [4].

All-Nearest-Smaller-Values. Given a sequence of values, solving
the All-Nearest-Smaller-Values (ANSV) problem requires finding
for each element the first smaller element to the left (or right). A
number of problems can be reduced to theANSV problem, including
merging of two sorted sequences, monotone polygon triangulation,
Cartesian tree construction, and parenthesis matching [2, 7]. Thus,
while we present our parallel algorithm for the ANSV problem to
facilitate construction of suffix trees, it is a problem worth studying
in its own right and our algorithm can be used in these and many
other applications.

2 DISTRIBUTED CONNECTED COMPONENTS
The Grand Challenge Iowa corn soil metagenomic data set se-
quenced at the Joint Genome Institute contains 1.8 billion sequenc-
ing reads [15]. The corresponding de-Bruijn graph consists of ap-
proximately 135 billion vertices and edges, too large for any as-
sembler to assembly directly. Howe et al. [8] discovered that the
high species level heterogeneity in metagenomic data sets leads to
a large number of disjoint connected components in the de Bruijn
graph. This property can be exploited to partition the reads into
disjoint sets and assemble each set independently.

Motivated by this application, we developed a distributed mem-
ory parallel connected components algorithm, making use of iter-
ative sorting of an edge list graph format and merging of neigh-
boring or overlapping components, as well as a neighbor doubling
approach similar to the pointer jumpingmethod used in list ranking.
We demonstrated the scalability of this algorithm by partitioning
the grand challenge Iowa corn soil Metagenomic data set with 1.8

billion reads, a graph with ≈ 135 billion edges and ≈ 390 million
components, in 22 minutes (previously 120h [8]) using 80 nodes (2
socket Xeon E5-2650) totaling 1280 cores [5].

Our algorithm showed promising results also for other types for
graphs. We continued this work by creating a hybrid approach be-
tween our Connected Components (CC) algorithm and distributed
memory Breadth-First-Search (BFS) [9]. We showed that using run-
time algorithm selection between BFS and our CC algorithm, the
hybrid method generalizes to diverse graph topologies and achieves
superior performance compared to the state-of-the-art MultiStep
method[19].

REFERENCES
[1] Mohamed Ibrahim Abouelhoda, Stefan Kurtz, and Enno Ohlebusch. 2004. Replac-

ing suffix trees with enhanced suffix arrays. Journal of Discrete Algorithms 2, 1
(2004), 53–86.

[2] Omer Berkman, Baruch Schieber, and Uzi Vishkin. 1993. Optimal doubly loga-
rithmic parallel algorithms based on finding all nearest smaller values. Journal
of Algorithms 14, 3 (1993), 344–370.

[3] Patrick Flick and Srinivas Aluru. 2015. Parallel distributed memory construction
of suffix and longest common prefix arrays. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis.
ACM, 16.

[4] Patrick Flick and Srinivas Aluru. 2017. Parallel Construction of Suffix Trees and
the All-Nearest-Smaller-Values Problem. In Parallel and Distributed Processing
Symposium (IPDPS), 2017 IEEE International. IEEE, 12–21.

[5] Patrick Flick, Chirag Jain, Tony Pan, and Srinivas Aluru. 2015. A Parallel Connec-
tivity Algorithm for de Bruijn Graphs in Metagenomic Applications. In Proceed-
ings of the International Conference for High Performance Computing, Networking,
Storage and Analysis. ACM, 15.

[6] Dan Gusfield. 1997. Algorithms on strings, trees and sequences: computer science
and computational biology. Cambridge university press.

[7] Xin He and Chun-Hsi Huang. 2001. Communication efficient BSP algorithm for
all nearest smaller values problem. J. Parallel and Distrib. Comput. 61, 10 (2001),
1425–1438.

[8] Adina Chuang Howe, Janet K Jansson, Stephanie A Malfatti, Susannah G Tringe,
James M Tiedje, and C Titus Brown. 2014. Tackling Soil Diversity with the
Assembly of Large, Complex Metagenomes. Proceedings of the National Academy
of Sciences 111, 13 (2014), 4904–4909.

[9] Chirag Jain, Patrick Flick, Tony Pan, Oded Green, and Srinivas Aluru. 2017.
An Adaptive Parallel Algorithm for Computing Connected Components. IEEE
Transactions on Parallel and Distributed Systems 28, 9 (2017), 2428–2439.

[10] Juha Kärkkäinen and Peter Sanders. 2003. Simple linear work suffix array con-
struction. In Automata, Languages and Programming. Springer, 943–955.

[11] Toru Kasai, Gunho Lee, Hiroki Arimura, Setsuo Arikawa, and Kunsoo Park.
2001. Linear-time longest-common-prefix computation in suffix arrays and its
applications. In Combinatorial pattern matching. Springer, 181–192.

[12] Pang Ko and Srinivas Aluru. 2003. Space efficient linear time construction of
suffix arrays. In Combinatorial Pattern Matching. Springer, 200–210.

[13] Udi Manber and Gene Myers. 1993. Suffix arrays: a new method for on-line string
searches. siam Journal on Computing 22, 5 (1993), 935–948.

[14] Yuta Mori. [n. d.]. libdivsufsort. https://github.com/y-256/libdivsufsort.
[15] Henrik Nordberg, Michael Cantor, Serge Dusheyko, Susan Hua, Alexander Po-

liakov, Igor Shabalov, Tatyana Smirnova, Igor V Grigoriev, and Inna Dubchak.
2014. The Genome Portal of the Department of Energy Joint Genome Institute:
2014 Updates. Nucleic Acids Research 42, D1 (2014), D26–D31.

[16] Vitaly Osipov. 2012. Parallel suffix array construction for shared memory archi-
tectures. In String Processing and Information Retrieval. Springer, 379–384.

[17] Simon J Puglisi, William F Smyth, and Andrew H Turpin. 2007. A taxonomy
of suffix array construction algorithms. ACM Computing Surveys (CSUR) 39, 2
(2007), 4.

[18] Julian Shun. 2014. Fast parallel computation of longest common prefixes. In
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE Press, 387–398.

[19] George M Slota, Sivasankaran Rajamanickam, and Kamesh Madduri. 2016. A
Case Study of Complex Graph Analysis in Distributed Memory: Implementation
and Optimization. In Parallel and Distributed Processing Symposium, 2016 IEEE
30th International. IEEE.

[20] Esko Ukkonen. 1995. On-line construction of suffix trees. Algorithmica 14, 3
(1995), 249–260.

https://github.com/y-256/libdivsufsort

	Abstract
	1 Distributed String Indexing
	2 Distributed Connected Components
	References

