A Preliminary Study of Compiler Transformations for Graph Applications on the Emu System
Event Type
Registration Categories
Parallel Programming Languages, Libraries, and Models
TimeSunday, November 11th11:52am - 12:14pm
DescriptionUnlike dense linear algebra applications, graph applications typically suffer from poor performance because of 1) inefficient utilization of memory systems through random memory accesses to graph data, and 2) overhead of executing atomic operations. Hence, there is a rapid growth in improving both software and hardware platforms to address the above challenges. One such improvement in the hardware platform is a realization of the Emu system, a thread migratory and near-memory processor. In the Emu system, a thread responsible for computation on a datum is automatically migrated over to a node where the data resides without any intervention from the programmer. The idea of thread migrations is very well suited to graph applications as memory accesses of the applications are irregular. However, thread migrations can hurt the performance of graph applications if overhead from the migrations dominates benefits achieved through the migrations.

In this preliminary study, we explore two high-level compiler optimizations, i.e., loop fusion and edge flipping, and one low-level compiler transformation leveraging hardware support for remote atomic updates to address overheads arising from thread migration, creation, synchronization, and atomic operations. We performed a preliminary evaluation of these compiler transformations by manually applying them on three graph applications over a set of RMAT graphs from Graph500.—Conductance, Bellman-Ford’s algorithm for the single-source shortest path problem, and Triangle Counting. Our evaluation targeted a single node of the Emu hardware prototype, and has shown an overall geometric mean reduction of 22.08% in thread migrations.
Back To Top Button