Preserving Privacy through Processing Encrypted Data
Event Type
Registration Categories
Heterogeneous Systems
TimeSunday, November 11th9:01am - 9:40am
DescriptionSecure Function Evaluation (SFE) allows an interested party to evaluate a function over private data without learning anything about the inputs other than the outcome of this computation. This offers a strong privacy guarantee: SFE enables, e.g., a medical researcher, a statistician, or a data analyst, to conduct a study over private, sensitive data, without jeopardizing the privacy of the study's participants (patients, online users, etc.). Nevertheless, applying SFE to “big data” poses several challenges, most significantly in the excessive processing time for applications.

In this talk, I describe Garbled Circuits (GCs), a technique for implementing SFE that can be applied to any problem that can be described as a Boolean circuit. GC is a particularly good application to accelerate with FPGAs due to the good match between GC implementations and FPGA circuits. As our goal is to use GC for extremely large problems, including machine learning algorithms, we propose to address these problems by running GCs on clusters of machines equipped with FPGAs in the datacenter to accelerate the processing. In this talk, I will present our progress and challenges with this approach.
Back To Top Button