Tracking Network Events with Write Optimized
Data Structures

Justin Raizes*, Evan West*, Thomas M Kroeger*, Brian Wight*, Cindy Phillips*, Jon Berry*,
Michael Bender!, Rob Johnson*
*Sandia National Labs {jraizes, ewest, tmkroeg, bjwrigh, caphill, jberry } @sandia.gov
TStoney Brook University bender @cs.stonybrook.edu
YVMWare Labs rob@cs.stonybrook.edu

Abstract—The basic action of two IP addresses communicating
is still a critical part of most security investigations. Typically
security tools focus on logging torrents of security events. Some
more advanced environments will try to send the logs to a variety
of databases. Unfortunately, when faced with indexing billions of
events such databases are usually unable to keep up with the
rate of network traffic. As a result, security monitors typically
log with little to no indexing.

Write-optimized data structures (WODS) provides a novel
approach to traditional data structures. WODS use RAM to
aggregate multiple insertions into a single write and as a result
are able to ingest data 10 to 100 times faster while answering
queries in a timely manner. Our Diventi tool uses a write
optimized B-Tree known as a B®-tree to index layer 3 network
activity either from bro connection logs or netflow data. In 2017
our tool was able to track all bro-ids monitored traffic indexing
at rates above 100,000 events per second, and typically answering
queries in milliseconds.

This year diventi will connect directly with the SciNet security
team’s core tap and aggregation infrastructure, ingesting netflow
records directly from the Ixia switch that will be doing the
security monitoring. Working closely with the network security
team, diventi will provide sub-second query results to help
security responders identify which IPs were communicating at
what times.

Index Terms—security, networking, indexing, write optimized,
IDS

I. INTRODUCTION

Advanced security monitoring must juggle two opposing
efforts. Sensor teams focus on collection and recording data as
fast as possible, while analytic teams focus on understanding
and analysis, which requires access across large swaths of
data. If these analytics are to provide on-line monitoring
to protect systems as they operate then these systems need
to perform their analytics in a timely manner. Ideally these
analytics should be able to see and use a wide view of the
data collected but this hinders their responsiveness. We can
store one second’s worth of data in one second. However,
searching a year’s worth of data in one second is much more
challenging. If our analysts can’t use our data much of the
value is lost. To put this into perspective, imagine an Internet
without search engines.

Our research seeks to fill the gap between sensors and
analytics to find efficient ways in which sensors can still record
one second of data in one second in addition to organizing
the data to ensure that analytics can query one year’s worth

of data in one second. As the size of data scales beyond
primary storage (RAM), systems are faced with one of two
choices: expire data or move to slower secondary storage
and fall behind. Traditionally, these challenges have been
tackled by expanding the amount of primary storage available
using clusters of computers with lots of RAM. However,
the data eventually catches up, overwhelming the amount of
primary storage available. Recent work with Write-Optimized
Data Structures (WODS) has shown that it is possible to
ingest torrential streams of data using larger, less expensive
secondary storage, while still maintaining timely queries.

At SuperComputing 2017, Diventi used a B€ tree to track IP
addresses across 600 gigabits per-second (Gbps) of monitored
traffic on a single computer. In three days, our system indexed
over 6 billion events, while maintaining point query response
times of milliseconds. In contrast, the SciNet security team
used a cluster of 30 nodes to monitor traffic using a commer-
cial log management tool.

This year, at the Network Research Exhibition, we will
aim to index, all IPs seen from netflow data received directly
from the network infrastructure. We will additionally pay
close attention to query performance during active ingestion,
in order to understand how an analytic might interact with
Diventi. With netflow data, we remove the need for security
tools like bro and integrate directly with the core networking
infrastructure to provide near real-time insights for the security
team.

II. BACKGROUND

Inserting data into a traditional B-tree typically requires
O(logp N) writes to secondary storage per each insert. While
many of these can be cached in RAM, as N grows to years
worth of data the number of writes on each insert trend towards
this bound. As a result these traditional data structures don’t
represent an efficient way to balance primary and secondary
storage for tracking torrents of security monitoring data.
Because of this security monitoring systems have typically
shied away from indexing or used RAM based data structures,
limiting the scope of data tracked.

In contrast, a write-optimized B-tree such as the B¢-tree
uses buffers at each level in the tree to aggregate multiple
inserts into each write. By buffering writes at internal nodes
we improve write latency as much as 10 to 100 times while

Fig. 1: B¢ tree stores data points at each node. When a node
fills up the cached entries are flushed to the lower nodes.

losing only a small constant factor in query performance [1].
Each node, of size B, is divided into two sections: pivots and
cache. A tunable parameter, €, takes values between 0 and 1,
to determines the ratio between the two components. Pivots
and child pointers take up B¢ space and the cache takes up the
remaining space (B — B€). As elements are inserted, they are
added to the buffer of the root node. When a buffer fills up, its
contents are flushed to lower nodes, where the insertions are
again buffered. Figure 1 shows how a typical B¢-tree works.

This behavior results in an insertion performance of
O(l;gﬁiv), as compared to a standard B-tree’s O(logg N).
For perspective, parameters of B = 1024 and € = 557 &
.14 provide a speedup of ~ 54z insertion rate over a standard
B-tree.

In trade, the B¢ tree pays O(log%N) for queries instead of a
standard B-tree’s O(logz N). Continuing with the example of
€= m ~ .14, a query takes only ~ 6.93x longer for a B¢
tree. In our experiences last year at SuperComputing, queries
typically took under 500 ms. From the practical perspective
of a security monitoring system, this trade off is frequently
the difference between being able to index events in near real-
time or having no index at all. In this light the slower queries
that use an existing index are far better than the many systems
we have seen which run grep in parallel and take minutes to
answer the same question [2].

Alternative solutions involving distributing workload over
clusters of computers using tools such as MongoDb, Hadoop,
or ElasticSearch have also been evaluated. On a cluster of 5
machines, researchers found that none of the tools were able to
exceed 200 transactions per second after 100, 000, 000 records
(average record size 2866 bytes) had been ingested in a write-
heavy workload [3].

III. METHODS AND ENGINEERING

During the Network Research Exhibition, we will receive a
copy of the security team’s tap of netflow data. Diventi will
attempt to index this data in near real-time, tracking the rates
at which it is able to do so. The hardware used is a basic Dell
server, specifically a Dell 730 server equipped with 128 GB of
RAM, one 16 core processor, and 5 SSDs aggregated into an
8 TB data store. Diventi will be used to answer queries about
specific IP addresses from the security team as they work to
investigate security alerts.

A. Data Schema

Our security monitoring events typically contain a notice
about two IP addresses communicating to include timestamp,
ports, protocols, and some sense for the number of packets
and bytes in each direction. Our B€-tree stores these events
in a key-value pairing. Since each event represents two IP
addresses (IP A and IP B) communicating, two separate key-
value pairs are inserted per event, to enable quick lookup of
either IP.

We begin each key with an IP and timestamp to enable
efficient searching for a given IP, possibly over a given time
frame or possibly a given subnet of IPs. For example this index
can quickly find activity from 1.2.3.4 for the last month, or all
activity from sub-net 1.2.3.X. On the other hand searching for
all activity from 1.2.3.X from last month would require doing
the indexed search of 1.2.3.x and then manually filtering the
entries that are in that time frame.

One common limitation of a write optimized data structure
is the inability to detect collisions on inserts. This is because
detecting if that key already exists would require a full
traversal down the tree to verify that it didn’t exist at any
level. This would require significantly more IOs per insertion
and would reduce the ingestion rate. We work around this
limitation by filling out our key with the rest of the unique
details from this event. This ensures that each unique security
event is kept in a unique key and there are no collisions. Table I
shows a summary of the data we have in our key.

Byte Range | Length | Field
0-3 4 IP A
4-11 8 Timestamp
12-14 2 Port A
15-18 4 IP B
19-21 2 Port B

22-22 1 Misc flags

TABLE I: Data fields for key

The value holds many of the other relevant components
of a network event. These include the duration of interac-
tion, amount of data transferred, and any relevant tcp flags.
Typically, security analysts care about the scale of data and
packets transferred (e.g. 2 GB ‘versus 2 bytes). Tools such as
Bro record the exact values, with each of the 4 fields using
4 bytes. Since the complete data is kept in the original logs,
our goal is simply to help the security analyst quickly assess
whether a connection is of note. With this in mind, we record
the magnitude of data transferred instead of its full value, using
only a single byte per field, rather than 4. The reduction in
value size reduces the amount of writing done per event, thus
improving ingestion speed.

Finally we note that while our focus has been on indexing
IP address, our code design has focused on clear abstractions
between events, keys and values. This has made it easy to
adapt our tool to ingesting both bro connection logs and
netflow data. We believe this design will also enable easy
adaption to indexing other security events such as URLs and
e-mail addresses.

B. Contributions and impact

In recent years, much effort has been focused on analysis
of big data and network inspection. This work typically has
the goal of creating a security system which, in an automated
fashion: actively monitors the network, recognizes threats, and
takes action to stop those threats. However, considerably less
effort has been focused on providing that data in the context of
network events in actionable times to these analytics. Without
timely query responses and comprehensive data, these systems
must either limit to scope of the data they consider or reduce
their approach to a post event alert instead of active responses.

Berry and Porter [4] showed that state-of-the-art hashing and
expiration methods can quickly degrade in performance as the
data set needed to correctly find patterns of interest exceeds the
size of available memory. They used the (non-write-optimized)
reference implementation for the Firehose benchmark. When
the working space could exactly hold the set of active keys, the
reference implementation reported 2/3 of the reportable keys
(prematurely expiring the rest). When the working space could
hold half the active keys, about 1/3 of the reportable keys
were reported. When only 1/4 the active keys fit in memory,
essentially nothing was reported. This motivates the need for
tools that can efficiently use both RAM and secondary storage
to increase storage capacity while still providing timely query
responses.

Diventi fills this need by indexing data quickly for storage

across both primary (RAM) and secondary (SSD) storage
while still allowing for timely query responses. Secondary
storage is both less expensive and available in larger quantities
than primary storage, reducing costs significantly. The in-
creased speed and storage capacity make more efficient use of
the resources available and increase the scope of data analytics
can consider. It is tools like Diventi that will help bridge the
gap between sensors that can record torrents of data in one
second and analytics that wish to consider years of that data
in one second.
Acknowledgments Sandia National Laboratories is a multi-
mission laboratory managed and operated by National Tech-
nology and Engineering Solutions of Sandia, LLC., a wholly
owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’s National Nuclear Security Adminis-
tration under contract DE-NA-0003525.

REFERENCES

[1] M. A. Bender, M. Farach-Colton, R. Johnson, R. Kraner, B. C. Kuszmaul,
D. Medjedovic, P. Montes, P. Shetty, R. P. Spillane, and E. Zadok, “Don’t
thrash: How to cache your hash on flash,” PVLDB, vol. 5, no. 11, pp.
1627-1637, 2012.

[2] A. Sharma and V. Stoffer, “pOwnage and detection with bro,” in Proceed-
ings of BroConn 2015, 2015.

[3] R. P. Ritchey, “Accumulo/hadoop, mongodb, and elasticsearch perfor-
mance for semi structured intrusion detection (ids) data,” ICF, Inc.
Columbia United States, Tech. Rep., 2016.

[4] J. W. Berry and A. M. Porter, “Stateful streaming in distributed memory
supercomputers,” https://www.osti.gov/servlets/purl/1406959, slides from
an invited talk at the Chesapeake Large-Scale Analytics Conference
(CLSAC) in October 2016. Slides archived at OSTI. Accessed: 2018-4-3.

[5] M. A. Bender, M. Farach-Colton, W. Jannen, R. Johnson, B. C. Kuszmaul,
D. E. Porter, J. Yuan, and Y. Zhan, “An introduction to b®-trees and write-
optimization,” :login; magazine, vol. 40, no. 5, pp. 22-28, October 2015.

