
Runtime Data Management on Non-volatile
Memory-based Heterogeneous Memory for

Task-Parallel Programs

Kai Wu

1

Jie Ren Dong Li

University of California, Merced
PASA Lab

SC’18

Non-volatile Memory is Promising

2

• Fast byte-addressable and persistent
NVM technologies are coming

Cache

DRAM

NVM

SSD

HDD

Memory/Storage Hierarchy

Increasing
C

apacityIn
cr

ea
si

ng
Sp

ee
d

• NVM has good performance

HDD SSD NVM DRAM

Latency 7.1 ms 68 us 2-500 ns 100 ns

Bandwidth 2.6 MB/s 250 MB/s 5 GB/s 64 GB/s

Non-volatile Memory is Promising

3

• Fast byte-addressable and persistent
NVM technologies are coming Memory/Storage Hierarchy

Increasing
C

apacityIn
cr

ea
si

ng
Sp

ee
d

• NVM has good performance but

• The existing work already shows the
big performance loss, using NVM as
main memory [1,2]

HDD SSD NVM DRAM

Latency 7.1 ms 68 us 2-500 ns 100 ns

Bandwidth 2.6 MB/s 250 MB/s 5 GB/s 64 GB/s

still not enough
Cache

DRAM

NVM

SSD

HDD

[1] S. R. Dulloor, A. Roy, Z. Zhao, N. Sundaram, N. Satish, R. Sankaran, J. Jackson, and K. Schwan, “Data Tiering in Heterogeneous Memory Systems,”EuroSys’16
[2]K. Wu, Y. Huang, and D. Li, “Unimem: Runtime Data Management on Non-volatile Memory-based Heterogeneous Main Memory,” SC’17.

NVM-based Heterogenous Main Memory System

• We must pair NVM with DRAM to build a heterogeneous memory
system (HMS)

4

CPU

DRAM NVM

Which data should go to which memory?

Task-parallel Programs
• We target the task-based programming model

• Particularly, the OmpSs programming model (similar to OpenMP task)

• Tasks are independent code regions that can be executed in parallel
• Programmers express data dependencies between tasks

5

Research Challenges
• First, how to capture and characterize memory access patterns for

each task?
• Different tasks in a task-parallel program often work on different data (with

different memory addresses)

6

• Third, how to minimize the impact of data movement on application
performance?

• Second, how to maximize the performance benefit?
• How to estimate the performance benefit when data of a task is distributed

among DRAM and NVM?

Story in a Nutshell
• Tahoe: a runtime system for task-parallel programs to manage data

placement on NVM-based HMS
• No hardware/application modification

• Characterize memory access information across tasks
• Profiling memory access pattern of some tasks
• Predicting the performance of other tasks that have no page sharing with the

profiled tasks

• Hybrid performance model to drive data placement decisions
• Combine machine learning and analytical models
• Avoid modeling complexity and introduce modeling flexibility

7

Background Information
• Task metadata information

• Task dependence information
• Task execution state (Initialized,

Ready, Active, Completed)
• Input/output data object information

8

• Task type
• Tasks running the same code

region with the same input data
size have the same task type

Example code from the Heat benchmark

Using Tahoe with Heterogonous Memory
System

Performance
modeling

DRAM Space
Management

Task Profiling

9

Profiling DB
Task

metadata

Task
metadata

Task
metadata …

Data Migration

readyQueue

Using Tahoe with Heterogonous Memory
System

Performance
Modeling

DRAM Space
Management

Task Profiling

10

Profiling DB
Task

metadata

Task
metadata

Task
metadata …

I. Does this task type exist in database?

Data Migration

II. No. No data move movement
readyQueue

Performance
modeling

DRAM Space
Management

Representative
Task Profiling

11

Profiling DB
Task

metadata

Task
metadata

Task
metadata …

Data Migration

Using Tahoe with Heterogonous Memory
System

readyQueue

I. Does this task type exist in database?

II. The task type is
found

III. Making the data placement
decision

Task Profiling
• Our goal: collect main memory access events of the first instance of

each task type and decide which memory pages to migrate for each
task

12

• Memory access events: number of instructions, last-level cache misses
and execution time

• Use sampling-based hardware performance counters
• Map the last-level cache miss events to memory pages via memory addresses

Task Mapping
• The memory access information of the profiled task cannot be directly

used by other tasks to decide data placement
• Different tasks use different virtual addresses for their data objects

13

• Page-level -> Data object level

for (p = 1; p < NB; p++) {
#pragma omp task inout(a[(p-1)*k;k])
{

…
a[(p-1)k] = ….
…

}
}

Task 1

Task 2

Task Mapping
• The memory access information of the profiled task cannot be directly

used by other tasks to decide data placement
• Different tasks use different virtual addresses for their data objects

14

• Page-level -> Data object level

for (p = 1; p < NB; p++) {
#pragma omp task inout(a[(p-1)*k;k])
{

…
a[(p-1)k] = ….
…

}
}

Task 1

Task 2

Hot page

Task Mapping
• The memory access information of the profiled task cannot be directly

used by other tasks to decide data placement
• Different tasks use different virtual addresses for their data objects

15

• Page-level -> Data object level

for (p = 1; p < NB; p++) {
#pragma omp task inout(a[(p-1)*k;k])
{

…
a[(p-1)k] = ….
…

}
}

Task 1

Task 2

Hot page

Hot page

16

Performance Modeling

NVM DRAM

Task

• Goal: Decide DRAM space partition between multiple tasks when those
tasks are ready to be run by multiple processing elements

17

Performance Modeling

• Goal: Decide the DRAM space partition between multiple tasks when
those tasks are ready to be run by multiple processing elements

NVM DRAM

Task
Complete data placement

18

Performance Modeling

• Goal: Decide the DRAM space partition between multiple tasks when
those tasks are ready to be run by multiple processing elements

NVM DRAMNVM DRAM

Task
Partial data placement

• Hybrid performance model
• Machine learning based-model to predict performance for complete data

placement
• Analytical based-model to predict performance for partial data placement

Performance Modeling for Complete Data Placement
• Analytical modeling is hard to

capture the sophisticated
relationship between execution
time and performance events

19

• Modeling techniques
• Linear regression analysis (LR)
• Artificial neural network (ANN)

ANN
or
LR

𝑡𝑡𝑡𝑡𝑡𝑡_𝑚𝑚𝑚𝑚𝑚𝑚_𝑎𝑎𝑎𝑎𝑎𝑎

𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑇𝑇𝑐𝑐_NV𝑀𝑀

𝑇𝑇𝑐𝑐_𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

Input Model Output

– 𝑡𝑡𝑡𝑡𝑡𝑡_𝑚𝑚𝑚𝑚𝑚𝑚_𝑎𝑎𝑎𝑎𝑎𝑎: last level cache miss rate
– 𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡: total instruction number
– 𝑇𝑇𝑐𝑐_NV𝑀𝑀: execution time on NVM
– 𝑇𝑇𝑐𝑐_𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷: Estimated execution time on DRAM

Performance Modeling for Complete Data Placement

• Prediction accuracy and training time with various memory bandwidth
• Seven benchmarks from BSC application repository
• Cross-validation

• ANN model performs better (less than 6% prediction error on average)
• Use ANN model in the Tahoe

20

Model Type Multiple LR Model ANN Model

NVM Bandwidth 1/4 1/8 1/16 1/4 1/8 1/16

Average training time per epoch (s) 25.3 23.5 22.4 32.4 31.7 33.8

Total training time (s) 207.2 191.4 195.0 254.9 249.6 262.3

Average prediction error 10.9% 26.4% 45.9% 3.6% 4.1% 5.1%

Prediction error variance 0.2 57.2 4700 0.007 0.016 0.017

21

– Tp: execution time with the partial data placement
– p_nvm_acc: number of NVM accesses with partial data placement
– tot_mem_acc: total number of memory accesses with complete data placement

𝑇𝑇𝑝𝑝 = (𝑇𝑇c_𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑇𝑇𝑐𝑐_𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) ×
𝑝𝑝_nvm_𝑎𝑎cc
𝑡𝑡𝑡𝑡𝑡𝑡_𝑚𝑚𝑚𝑚𝑚𝑚_𝑎𝑎𝑎𝑎𝑎𝑎

+ 𝑇𝑇𝑐𝑐_𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

Performance Modeling for Partial Data Placement

• The machine learning model needs to increase the number of
parameters (lacks flexibility)

• Analytical modeling

Performance Modeling for Partial Data Placement
• Performance prediction error

• Three configurations: (1) NVM-only, (2) memory is allocated using a round
robin approach on both NVM and DRAM, and (3) DRAM-only

• The prediction error is less than 7%
22

Benchmarks FFT BT Strassen CG Heat Random
Access

SPECFE
M3D

𝑝𝑝_nvm_𝑎𝑎cc 5.7 ×
× 107

1.9 ×
× 108

7.7 ×
× 106

4.3 ×
× 107

5.2 ×
× 107

1.0 ×
× 108

7.4 ×
× 107

𝑡𝑡𝑡𝑡𝑡𝑡_𝑚𝑚𝑚𝑚𝑚𝑚_𝑎𝑎𝑎𝑎𝑎𝑎 1.2 ×
× 108

4.1 ×
× 108

1.6 ×
× 107

7.4 ×
× 107

2.2 ×
× 108

2.7 ×
× 108

1.45
× 108

𝑝𝑝_nvm_𝑎𝑎cc
𝑡𝑡𝑡𝑡𝑡𝑡_𝑚𝑚𝑚𝑚𝑚𝑚_𝑎𝑎𝑎𝑎𝑎𝑎

0.48 0.46 0.48 0.58 0.24 0.37 0.51

Prediction
error

6.9% 3.6% 3.0% 1.5% 3.0% 3.0% 6.5%

Data Migration for Multiple Tasks

23

Task 1 Task 2 Task 3 Task 4

𝑚𝑚1 𝑚𝑚2 𝑚𝑚3 𝑚𝑚4
How many pages
on DRAM?

Estimated
execution time 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝1 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝3 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝4

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = max 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖(1 ≤ 𝑖𝑖 ≤ 𝑘𝑘) Dynamic programming !

Case 1: tasks with different types co-run

Data Migration for Multiple Tasks

24

Task 1 Task 2 Task 3 Task 4

Evenly partition the available DRAM space

Case 2: tasks with the same type co-run

DRAM Space Management

• Records which memory pages are in DRAM

• Migrate pages from DRAM to NVM when DRAM runs out of space
and there is a task pending to be executed

• LRU policy (Expensive)

25

DRAM Space Management

• Records which memory pages are in DRAM

• Migrate pages from DRAM to NVM when DRAM runs out of space
and there is a task pending to be executed

• LRU policy (Expensive)

26

• FIFO policy based on tasks execution order

Performance Evaluation

• NVM emulator
• Quartz(Hewlett Packard): enables the emulation of NVM latency and bandwidth

characteristics
• Workloads

• FFT, BT-MZ, Strassen, CG, Heat, RandomAccess(RA) from BSC application
repository

• SPECFEM3D(SPEC3D)
• Comparisons

• Existing work:
• X-Mem (EuroSys’16)
• Unimem (SC’17)

• HMS-oblivious (baseline)

27

• X-mem, Unimem and Tahoe reduce execution time by 5%, 11% and 21% on average
respectively (using HMS-oblivious as the baseline)

28

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

FFT BT Strassen CG Heat RA SPEC3D Mean of All

N
or

m
al

ize
d

Ex
ec

ut
io

n
Ti

m
e

Basic Performance Tests with 1/4 DRAM Bandwidth
DRAM-only NVM-only HMS with X-Mem HMS with Unimem HSM with Tahoe

• Tahoe outperforms X-mem and Unimem by 16% and 10% on average

• Tahoe has larger numbers of DRAM memory accesses than other systems
• Make best use of DRAM for performance 29

0

0.2

0.4

0.6

0.8

1

1.2

1.4

U
nm

an
ag

ed
DR

AM
-O

nl
y

N
VM

-O
nl

y
Ta

ho
e

X-
m

em
U

ni
m

em
U

nm
an

ag
ed

DR
AM

-O
nl

y
N

VM
-O

nl
y

Ta
ho

e
X-

m
em

U
ni

m
em

U
nm

an
ag

ed
DR

AM
-O

nl
y

N
VM

-O
nl

y
Ta

ho
e

X-
m

em
U

ni
m

em
U

nm
an

ag
ed

DR
AM

-O
nl

y
N

VM
-O

nl
y

Ta
ho

e
X-

m
em

U
ni

m
em

U
nm

an
ag

ed
DR

AM
-O

nl
y

N
VM

-O
nl

y
Ta

ho
e

X-
m

em
U

ni
m

em
U

nm
an

ag
ed

DR
AM

-O
nl

y
N

VM
-O

nl
y

Ta
ho

e
X-

m
em

U
ni

m
em

U
nm

an
ag

ed
DR

AM
-O

nl
y

N
VM

-O
nl

y
Ta

ho
e

X-
m

em
U

ni
m

em

FFT BT Strassen CG Heat RA SPEC3D

N
or

m
al

ize
d

nu
m

be
r o

f m
em

or
y

ac
ce

ss
Memory access breakdowns with 1/4 DRAM Bandwidth

NVM DRAM

Conclusions
• Using runtime of a programming model to direct data placement

on heterogenous memory system is promising

• Tahoe is a runtime system for task-parallel programs to manage
data placement on NVM-based HMS

• leverage task metadata and collect the memory access information of limited
tasks

• use a hybrid performance model to make data placement decisions

• Tahoe achieves higher performance than a conventional HMS-
oblivious runtime (24% improvement on average) and two state-
of-the-art HMS-aware solutions (16% and 11% improvement on
average, respectively)

30

31

Thank you! Question?

	Runtime Data Management on Non-volatile�Memory-based Heterogeneous Memory for�Task-Parallel Programs
	Non-volatile Memory is Promising
	Non-volatile Memory is Promising
	NVM-based Heterogenous Main Memory System
	Task-parallel Programs
	Research Challenges
	Story in a Nutshell
	Background Information
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Task Profiling
	Task Mapping
	Task Mapping
	Task Mapping
	Performance Modeling
	Performance Modeling
	Performance Modeling
	Performance Modeling for Complete Data Placement
	Performance Modeling for Complete Data Placement
	Performance Modeling for Partial Data Placement
	Performance Modeling for Partial Data Placement
	Data Migration for Multiple Tasks
	Data Migration for Multiple Tasks
	DRAM Space Management
	DRAM Space Management
	Performance Evaluation
	Slide Number 28
	Slide Number 29
	Conclusions
	Slide Number 31

